首页> 外文期刊>Neuroscience: An International Journal under the Editorial Direction of IBRO >Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control.
【24h】

Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control.

机译:颗粒细胞稀疏代码的无监督学习可增强小脑自适应控制。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Marr [J. Physiol. (1969) 202, 437-470] and Albus [Math. Biosci. (1971) 10, 25-61] hypothesized that cerebellar learning is facilitated by a granule cell sparse code, i.e. a neural code in which the fraction of active neurons is low at any one time. In this paper, we re-examine this hypothesis in light of recent experimental and theoretical findings. We argue that cerebellar motor learning is enhanced by a sparse code that simultaneously maximizes information transfer between mossy fibers and granule cells, minimizes redundancies between granule cell discharges, and re-codes the mossy fiber inputs with an adaptive resolution such that inputs corresponding to large errors are finely encoded. We then propose that a set of biologically plausible unsupervised learning rules can produce such a code. To maintain a low mean firing rate compatible with a sparse code, an activity-dependent homeostatic mechanism sets the cells' thresholds. Then, to maximize information transfer, the mossy fiber--granule cell synapses are adjusted by a Hebbian rule. Furthermore, to minimize redundancies between granule cell discharges, the inhibitory Golgi cell--granule cell synapses are tuned by an anti-Hebbian rule. Finally, to allow adaptive resolution, a performance-based neuromodulator-like signal gates these three plastic processes. We integrate these gated learning rules into a simplified model of the cerebellum for arm movement control, and show that unsupervised learning of granule cell sparse codes greatly improves cerebellar adaptive motor control in comparison to a "fixed" Marr--Albus-type model.Until recently, activity-dependent cerebellar plasticity was thought to be largely confined to the granule cell--Purkinje cell synapses. This static view of the cerebellum is, however, quickly being replaced by an extremely dynamic view in which plasticity is omnipresent. The present theoretical study shows how several forms of plasticity in the granular layer of the cerebellum can produce fast, accurate and stable cerebellar learning.
机译:马尔[J.生理学。 (1969)202,437-470]和Albus [数学。生物科学。 (1971)10,25-61]假设小脑学习是由颗粒细胞稀疏代码,即在任何时候活动神经元的比例低的神经代码来促进的。在本文中,我们根据最近的实验和理论发现重新审查了这一假设。我们认为,稀疏代码可增强小脑运动学习,而稀疏代码可同时使苔藓纤维和颗粒细胞之间的信息传递最大化,使颗粒细胞放电之间的冗余最小化,并以自适应分辨率重新编码苔藓纤维输入,从而使输入对应于大误差被很好地编码。然后,我们提出一组生物学上可行的无监督学习规则可以产生这样的代码。为了保持与稀疏代码兼容的低平均发射速率,依赖于活动的稳态机制设置了细胞的阈值。然后,为了最大程度地传递信息,通过Hebbian规则调整了长满苔藓的纤维-颗粒细胞的突触。此外,为了最大程度地减少颗粒细胞放电之间的冗余,可通过反黑比定律来调节抑制性高尔基细胞-颗粒细胞突触。最后,为了实现自适应分辨率,基于性能的类似神经调节器的信号会控制这三个塑性过程。我们将这些门控学习规则集成到用于手臂运动控制的小脑简化模型中,并显示与“固定” Marr-Albus型模型相比,无监督学习粒细胞稀疏代码可以大大改善小脑自适应运动控制。最近,人们认为活动依赖型小脑可塑性主要局限于颗粒细胞-浦肯野细胞突触。但是,小脑的静态视图很快就被动态性极强的视图所取代,其中可塑性无所不在。目前的理论研究表明,小脑颗粒层中几种形式的可塑性如何产生快速,准确和稳定的小脑学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号