首页> 外文期刊>New Journal of Chemistry >Characterization of microscopic disorder in reconstructed porous materials and assessment of mass transport-relevant structural descriptors
【24h】

Characterization of microscopic disorder in reconstructed porous materials and assessment of mass transport-relevant structural descriptors

机译:重建多孔材料中微观异常的表征和与传质有关的结构描述符的评估

获取原文
获取原文并翻译 | 示例
           

摘要

The targeted optimization of the functional properties of porous materials includes the understanding of their transport properties and thus requires knowledge about the relationship between material synthesis, resulting in three-dimensional material morphology, and relevant transport properties. In this Perspective, we present our views and results on the characterization of microscopic disorder in functional porous materials, which are widely used today as fixed beds in adsorption, separation, and catalysis. This allows us to identify structural parameters that impact their mass transport properties and eventually their overall performance in technological operations. We address this complex topic at the following levels: (i) computer-generation of disordered packings allows the systematic investigation of the bed porosity (packing density) and degree of packing heterogeneity. These studies are complemented by the physical reconstruction of real packed and monolithic beds, which resolves the salient features of the packing process and monolith synthesis that are under the control of the experimentalist. (ii) Once reconstructed packed-bed and monolith morphologies are available, they are analysed by statistical methods to derive structural descriptors for their mass transport properties. Spatial tessellation schemes and chord length distributions are shown to be suitable for that purpose. They lead us to sensitive correlations of the degree of pore-environment heterogeneity and packing-scale disorder with the dynamics of (random) diffusion and (flow-field dependent) hydrodynamic dispersion, respectively. (iii) Direct or pore-scale numerical simulations are implemented on a high-performance computing platform to quantify the relevant transport properties of the materials. This complementary approach highlights the morphological descriptors of mass transport efficiency. They are validated by the simulations and in the future could direct the rational design of materials from their synthesis to targeted applications based on physical reconstruction.
机译:多孔材料功能特性的目标优化包括对它们的传输特性的理解,因此需要有关材料合成,三维材料形态和相关传输特性之间关系的知识。在此观点中,我们就功能多孔材料中的微观无序表征提出了我们的观点和结果,这些功能多孔材料如今已广泛用作吸附,分离和催化的固定床。这使我们能够确定影响其传质特性并最终影响其在技术操作中的整体性能的结构参数。我们在以下层次上解决这个复杂的主题:(i)计算机生成无序填料可以对床的孔隙度(填料密度)和填料异质程度进行系统研究。这些研究得到了实际填充床和整体床的物理重建的补充,这解决了在实验师控制下的填充过程和整体合成的显着特征。 (ii)重建的填充床和整体结构形态可用后,可通过统计方法对其进行分析,以得出其传质特性的结构描述子。显示出空间镶嵌方案和弦长分布适合于此目的。他们使我们发现孔隙环境异质性程度和堆积尺度紊乱程度分别与(随机)扩散和(与流场有关)流体动力扩散动力学有关。 (iii)在高性能计算平台上执行直接或孔尺度数值模拟,以量化材料的相关传输特性。这种互补的方法突出了质量运输效率的形态描述。它们已经通过仿真验证,将来可以指导材料的合理设计,从其合成到基于物理重建的目标应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号