...
首页> 外文期刊>Journal of Applied Physics >Structural and electronic properties of group-IV tin nanotubes and their effects on the adsorption of SO2 molecules: Insights from DFT computations
【24h】

Structural and electronic properties of group-IV tin nanotubes and their effects on the adsorption of SO2 molecules: Insights from DFT computations

机译:

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The structural and electronic properties of pristine and SO2 adsorbed buckled tin nanotubes were investigated using density functional theory calculations. The effects of SO2 gas adsorption on the electronic structure of the nanotubes were analyzed in detail. SO2 molecule was initially positioned on the armchair and zigzag stanene based nanotubes with orientations through both interacting sulfur and oxygen sites. The results suggest that the considered armchair nanotubes have direct bandgaps at the K point, indicating the semiconductor characteristics of these nanotubes. Thus, these nanotubes are efficient candidates for gas sensing applications. Moreover, the considered (9, 0) and (10, 0) zigzag nanotubes also exhibit semiconductor behavior. Among the armchair nanotubes, the highest (most negative) adsorption energy belongs to (8, 8) armchair nanotube, which indicates that SO2 interaction with (8, 8) nanotube is energetically most favorable. The adsorption energy slightly increases with increasing the nanotube diameter. Besides, the adsorption of the SO2 molecule on the nanotube surface through its oxygen atoms is more favorable in energy than that through its central sulfur atom. The projected density of states of the interacting tin and oxygen atoms show the formation of chemical bonds between these atoms, as evidenced by the accumulation of electronic density at the middle of the newly formed bonds. Based on charge density difference calculations, we found the charge accumulation on the adsorbed SO2 molecule, which represents that SO2 acts as a charge acceptor. Published by AIP Publishing.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号