首页> 外文期刊>NeuroImage >Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized modifications of arteriolar diameters.
【24h】

Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized modifications of arteriolar diameters.

机译:在解剖学上精确的大型人类血管网络中,通过皮层内小动脉调节脑血流量的模拟研究。第二部分:由小动脉直径的整体或局部改变引起的流量变化。

获取原文
获取原文并翻译 | 示例
       

摘要

In a companion paper (Lorthois et al., Neuroimage, in press), we perform the first simulations of blood flow in an anatomically accurate large human intra-cortical vascular network (~10000 segments), using a 1D non-linear model taking into account the complex rheological properties of blood flow in microcirculation. This model predicts blood pressure, blood flow and hematocrit distributions, volumes of functional vascular territories, regional flow at voxel and network scales, etc. Using the same approach, we study flow reorganizations induced by global arteriolar vasodilations (an isometabolic global increase in cerebral blood flow). For small to moderate global vasodilations, the relationship between changes in volume and changes in flow is in close agreement with Grubb's law, providing a quantitative tool for studying the variations of its exponent with underlying vascular architecture. A significant correlation between blood flow and vascular structure at the voxel scale, practically unchanged with respect to baseline, is demonstrated. Furthermore, the effects of localized arteriolar vasodilations, representative of a local increase in metabolic demand, are analyzed. In particular, localized vasodilations induce flow changes, including vascular steal, in the neighboring arteriolar trunks at small distances (<300 mum), while their influence in the neighboring veins is much larger (about 1 mm), which provides an estimate of the vascular point spread function. More generally, for the first time, the hemodynamic component of various functional neuroimaging techniques has been isolated from metabolic and neuronal components, and a direct relationship with several known characteristics of the BOLD signal has been demonstrated.
机译:在随附的论文中(Lorthois等人,Neuroimage,印刷中),我们使用一维非线性模型,在解剖学上精确的大型人皮层内血管网络(约10000个片段)中执行了血流的第一个模拟。解释了微循环中血流的复杂流变特性。该模型可预测血压,血流量和血细胞比容分布,功能性血管区域的体积,体素和网络规模的区域血流等。使用相同的方法,我们研究了由整体小动脉血管舒张引起的血流重组(脑血等代谢的全球增加)流)。对于中小范围的整体血管扩张,体积变化与流量变化之间的关系与格鲁布定律非常吻合,为研究其指数随基础血管结构变化提供了定量工具。在体素标度上,血流与血管结构之间存在显着相关性,相对于基线而言几乎没有变化。此外,分析了局部小动脉血管舒张作用(代表代谢需求的局部增加)。特别是,局部血管舒张引起近距离(<300毫米)的相邻小动脉主干中的血流变化,包括血管窃取,而它们对相邻静脉的影响要大得多(大约1毫米),从而可以估算出血管点扩散功能。更普遍地,首次从代谢和神经元成分中分离出各种功能性神经成像技术的血液动力学成分,并且已经证明与BOLD信号的几个已知特征有直接关系。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号