...
首页> 外文期刊>NeuroImage >Applications of multivariate modeling to neuroimaging group analysis: A comprehensive alternative to univariate general linear model
【24h】

Applications of multivariate modeling to neuroimaging group analysis: A comprehensive alternative to univariate general linear model

机译:多元建模在神经影像群分析中的应用:单变量通用线性模型的全面替代方案

获取原文
获取原文并翻译 | 示例

摘要

All neuroimaging packages can handle group analysis with t-tests or general linear modeling (GLM). However, they are quite hamstrung when there are multiple within-subject factors or when quantitative covariates are involved in the presence of a within-subject factor. In addition, sphericity is typically assumed for the variance-co-variance structure when there are more than two levels in a within-subject factor. To overcome such limitations in the traditional AN(C)OVA and GLM, we adopt a multivariate modeling (MVM) approach to analyzing neuroimaging data at the group level with the following advantages: a) there is no limit on the number of factors as long as sample sizes are deemed appropriate; b) quantitative covariates can be analyzed together with within-subject factors; c) when a within-subject factor is involved, three testing methodologies are provided: traditional univariate testing (UVT) with sphericity assumption (UVT-UC) and with correction when the assumption is violated (UVT-SC), and within-subject multivariate testing (MVT-WS); d) to correct for sphericity violation at the voxel level, we propose a hybrid testing (HT) approach that achieves equal or higher power via combining traditional sphericity correction methods (Greenhouse-Geisser and Huynh-Feldt) with MVT-WS. To validate the MVM methodology, we performed simulations to assess the controllability for false positives and power achievement. A real FMRI dataset was analyzed to demonstrate the capability of the MVM approach. The methodology has been implemented into an open source program 3dmvm in AFNI, and all the statistical tests can be performed through symbolic coding with variable names instead of the tedious process of dummy coding. Our data indicates that the severity of sphericity violation varies substantially across brain regions. The differences among various modeling methodologies were addressed through direct comparisons between the MVM approach and some of the GLM implementations in the field, and the following two issues were raised: a) the improper formulation of test statistics in some univariate GLM implementations when a within-subject factor is involved in a data structure with two or more factors, and b) the unjustified presumption of uniform sphericity violation and the practice of estimating the variance-covariance structure through pooling across brain regions.
机译:所有神经影像软件包都可以使用t检验或通用线性建模(GLM)处理组分析。但是,当存在多个受试者内部因素时,或者当存在受试者内部因素时涉及到定量协变量时,它们会非常困难。另外,当对象内因子中存在两个以上级别时,通常假定方差-协方差结构为球形。为了克服传统AN(C)OVA和GLM中的此类限制,我们采用多变量建模(MVM)方法在组级别分析神经影像数据,具有以下优点:a)对因素的数量没有限制,只要认为样本量合适; b)可以将定量协变量与受试者内部因素一起进行分析; c)当涉及对象内部因素时,提供了三种测试方法:带有球度假设(UVT-UC)的传统单变量测试(UVT)和违反假设时进行校正的传统单变量测试(UVT-SC),以及对象内部多变量测试(MVT-WS); d)为了在体素级别校正球度违规,我们提出了一种混合测试(HT)方法,该方法通过将传统的球度校正方法(Greenhouse-Geisser和Huynh-Feldt)与MVT-WS结合使用来达到相同或更高的功率。为了验证MVM方法,我们进行了仿真以评估误报和功率实现的可控性。分析了真实的FMRI数据集以证明MVM方法的功能。该方法已在AFNI中的开源程序3dmvm中实现,并且所有统计测试都可以通过带变量名的符号编码来执行,而不必进行繁琐的虚拟编码过程。我们的数据表明,违反球形的严重程度在大脑各个区域之间存在很大差异。通过直接比较MVM方法和该领域的某些GLM实施方案,解决了各种建模方法之间的差异,并提出了以下两个问题:a)在以下情况下,某些单变量GLM实施方案中的测试统计公式不正确:主体因素涉及具有两个或更多因素的数据结构,并且b)违反统一球形性的不合理推定,以及通过跨大脑区域合并来估计方差-协方差结构的实践。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号