首页> 外文期刊>NeuroImage >The role of multi-area interactions for the computation of apparent motion.
【24h】

The role of multi-area interactions for the computation of apparent motion.

机译:多区域交互作用在视在运动计算中的作用。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Apparent motion (AM) is a robust visual illusion, in which fast displays of static objects in successively different positions elicit the perception of object motion. Neurons in higher order areas 21 and 19 compute object motion under such conditions and send feedback to early visual areas 18 and 17, which is instrumental in eliciting computation of motion in those very areas. To explore the computational dynamics of AM, we made a neural field model consisting of two one-dimensional rings of simple neurons expressing firing rates, one for areas 17/18 and one for areas 19/21. The model neurons, without any orientation or direction selectivity, computed apparent motion for the range of space-timings of stimuli associated with short- and long-range AM in humans. The computation of long-range AM in 17/18 required two model areas and the presence of feedback and conduction/computation delays between those areas. As in the in vivo experiments of long-range AM, the stationary stimuli were initially mapped as stationary in model area 17/18, but after the feedback also these lower areas computed AM. The dynamics of the two-area network produces short-range and long-range apparent motion for a large range of feedback strengths and a small range of lateral excitation near the bifurcation to an amplitude instability. The computation of AM in higher order areas was due to the neurons in these areas having large receptive fields as a consequence of divergent feed-forward connectivity. This implies that these areas compute long-range AM when early areas 17 and 18 do not, and therefore higher order areas must enslave lower order areas to compute the same, if the whole network is to arrive at a coherent perceptual solution.
机译:视在运动(AM)是一种强大的视觉错觉,其中静态物体在连续不同位置的快速显示引起对物体运动的感知。高阶区域21和19中的神经元在这种条件下计算对象的运动,并将反馈发送到早期视觉区域18和17,这有助于在这些区域中引发运动的计算。为了探索AM的计算动力学,我们建立了一个神经场模型,该模型由两个表示发动频率的简单神经元的一维环组成,一个用于17/18区域,一个用于19/21区域。在没有任何方向或方向选择性的情况下,模型神经元针对与人类的短时和长时AM相关的刺激的空间定时范围计算了视在运动。 17/18中远程AM的计算需要两个模型区域,并且在这些区域之间存在反馈和传导/计算延迟。如在远程AM的体内实验中一样,静止刺激最初在模型区域17/18中被映射为静止,但是在反馈之后,这些较低的区域也计算出了AM。两区域网络的动力学会产生短距离和远距离的视在运动,从而在较大的反馈强度范围内以及在分支附近产生较小幅度的横向激励,从而产生幅度不稳定性。高阶区域中AM的计算是由于这些区域中的神经元由于前馈连接性不同而具有较大的接受区域。这意味着,当早期区域17和18不在时,这些区域将计算远程AM,因此,如果整个网络要获得一致的感知解决方案,则高阶区域必须奴役低阶区域以进行计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号