首页> 外文期刊>Biological invasions >What shapes giant hogweed invasion? Answers from a spatio-temporal model integrating multiscale monitoring data
【24h】

What shapes giant hogweed invasion? Answers from a spatio-temporal model integrating multiscale monitoring data

机译:什么形状的巨草入侵?整合多尺度监测数据的时空模型的答案

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this study we simulated the invasion of Heracleum mantegazzianum with a spatiotemporal model that combined a life-cycle matrix model with mechanistic local and corridor dispersal and a stochastic long-distance dispersal in a cellular automaton. The model was applied to the habitat configuration and invader distribution of eight 1 km~2 study areas. Comparing the simulations with monitoring data collected over 7 years (2002-2009) yielded a modelling efficiency of 0. 94. We tested the significance of different mechanisms of invasion by omitting or modifying single model components one at a time. Thus we found that the extent of H. mantegazzianum invasion at landscape level depends on both landscape-scale processes and local processes which control recruitment success and population density. Limiting recruitment success (100 → 30 %) and successionally decreasing the carrying capacity of habitats (max → 0) over 30 years significantly improved the projections of the invasion at the landscape level. Local dispersal reached farther than 10 m, i. e. farther than previously assumed, but appeared to be unaffected by wind directions. Long-distance dispersal together with local dispersal dominated the invasion quantitatively. Dispersal through corridors accounted for less invasive spread. Its importance, with respect to invasion speed (number of colonised model grid cells) is probably limited over short periods of time (7 years). Only dispersal along rivers made a significant quantitative contribution to invasion of H. mantegazzianum. We suggest that biotic heterogeneity of suitable habitats is responsible for varying invasion success and that successionally increasing competition leads to declining population densities of H. mantegazzianum over several decades slowing down the spread on the landscape scale.
机译:在这项研究中,我们用时空模型模拟了Metagazzianum的入侵,该模型将生命周期矩阵模型与机械局部和走廊分散以及细胞自动机中的随机长距离分散相结合。该模型应用于8个1 km〜2研究区的生境配置和入侵者分布。将模拟与过去7年(2002-2009年)收集的监视数据进行比较,得出建模效率为0。94。我们通过一次省略或修改单个模型组件来测试不同入侵机制的重要性。因此,我们发现曼塔格扎虫在景观水平上的入侵程度取决于景观规模过程和控制募集成功与人口密度的局部过程。在30年内限制招募成功(100→30%)并连续降低栖息地的承载能力(max→0)可以显着改善景观一级的入侵预测。局部扩散远超过10 m,即。 e。比以前设想的要远,但似乎不受风向的影响。远程扩散和局部扩散在数量上占主导地位。通过走廊扩散造成的入侵扩散较少。就入侵速度(定居模型网格单元的数量)而言,其重要性可能会在短时间内(7年)受到限制。仅沿河的扩散对M. mantegazzianum的入侵做出了重要的定量贡献。我们认为合适的栖息地的生物异质性是造成入侵成功率不同的原因,竞争的不断加剧导致曼塔格哈虫的种群密度在几十年中不断下降,从而减缓了景观规模的扩散。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号