...
【24h】

The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms.

机译:高亲和力谷氨酸转运蛋白GLT1,GLAST和EAAT4是通过不同的信号传导机制调控的。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

High-affinity glutamate transporters ensure termination of glutamatergic neurotransmission and keep the synaptic concentration of this amino acid below excitotoxic levels. However, neuronal glutamate transporters, EAAC1 and EAAT4, are located outside the synaptic cleft and contribute less significantly to the glutamate uptake in the brain than two astroglial transporters, GLAST and GLT1. Aberrant functioning of the glutamate uptake system seems to be linked to some neurodegenerative disorders (eg amyotrophic lateral sclerosis, ALS). Expression of glutamate transporters is differentially regulated via distinct cellular mechanisms. GLT1, which is expressed at very low levels in cultured astrocytes, is strongly induced in the presence of neurons. The present immunocytochemical data provide further evidence that neuronal soluble factors, rather than physical contact between neurons and glia, determine the induction of GLT1 in astrocytes. This effect is apparently mediated by yet undefined growth factor(s) via the tyrphostin-sensitive receptor tyrosine kinase (RTK) signalling, that in turn, supports the downstream activation of p42/44 MAP kinases and the CREM and ATF-1 transcription factors. RTK-independent simultaneous activation of the CREB transcription factor suggests a possible involvement of complementary pathway(s). Neuronal soluble factors do not affect expression of GLAST, but induce supporting machinery for differential regulation of GLAST via the astroglial metabotropic glutamate receptors, mGluR3 and mGluR5. Thus, long-term treatment with the group I mGluR agonist, DHPG, causes down-regulation of GLAST, whereas the group II agonist, DCG-IV, has an opposite effect on the expression of GLAST in astrocytes. However, in BT4C glioma cells glutamate or other transportable substrates (D-aspartate and L-2,4-trans-PDC) induced cell-surface expression of EAAT4 in a receptor-independent manner. The activity-dependent trafficking of this transporter which also exhibits properties of a glutamate-gated chloride channel may play functional roles not only in neuronal excitability, but in glioma cell biology as well.
机译:高亲和力的谷氨酸转运蛋白可确保谷氨酸能神经传递的终止,并使该氨基酸的突触浓度保持在兴奋毒性水平以下。但是,神经元谷氨酸转运蛋白EAAC1和EAAT4位于突触间隙之外,对大脑中谷氨酸吸收的贡献不如两个星形胶质转运蛋白GLAST和GLT1明显。谷氨酸吸收系统的异常功能似乎与某些神经退行性疾病(例如肌萎缩性侧索硬化,ALS)有关。谷氨酸转运蛋白的表达通过独特的细胞机制被差异调节。在培养的星形胶质细胞中以非常低的水平表达的GLT1在存在神经元的情况下被强烈诱导。目前的免疫细胞化学数据提供了进一步的证据,证明神经元可溶性因子而不是神经元和神经胶质之间的物理接触决定了星形胶质细胞中GLT1的诱导。这种作用显然是由尚未明确的生长因子通过酪氨酸受体敏感受体酪氨酸激酶(RTK)信号介导的,而后者又支持p42 / 44 MAP激酶以及CREM和ATF-1转录因子的下游激活。不依赖RTK的CREB转录因子同时激活提示可能参与了互补途径。神经元可溶性因子不影响GLAST的表达,但可通过星形胶质代谢型谷氨酸受体mGluR3和mGluR5诱导差异调节GLAST的支持机制。因此,用I类mGluR激动剂DHPG进行长期治疗会导致GLAST下调,而II类激动剂DCG-IV对星形胶质细胞中GLAST的表达有相反的影响。但是,在BT4C胶质瘤细胞中,谷氨酸或其他可运输的底物(D-天冬氨酸和L-2,4-trans-PDC)以受体非依赖性方式诱导EAAT4的细胞表面表达。该转运蛋白还具有谷氨酸门控氯化物通道的特性,其依赖于活性的运输过程不仅在神经元兴奋性方面而且在神经胶质瘤细胞生物学中也可以发挥功能性作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号