首页> 外文期刊>Biological Cybernetics: Communication and Control in Organisms and Automata: = Nachrichtenubertragung, Nachrichtenverarbeitung, Steuerung und Regelung in Organismen und in Automaten >Lateral spike conduction velocity in the visual cortex affects spatial range of synchronization and receptive field size without visual experience: a learning model with spiking neurons
【24h】

Lateral spike conduction velocity in the visual cortex affects spatial range of synchronization and receptive field size without visual experience: a learning model with spiking neurons

机译:视觉皮层中的横向峰值传导速度会影响同步的空间范围和没有视觉体验的感受野大小:带有尖峰神经元的学习模型

获取原文
获取原文并翻译 | 示例
           

摘要

Classical receptive fields (cRF) increase in size from the retina to higher visual centers. The present work shows how temporal properties, in particular lateral spike velocity and spike input correlation, can affect cRF size and position without visual experience. We demonstrate how these properties are related to the spatial range of cortical synchronization if Hebbian learning dominates early development. For this, a largely reduced model of two successive levels of the visual cortex is developed (e.g., areas V1 and V2). It consists of retinotopic networks of spiking neurons with constant spike velocity in lateral connections. Feedforward connections between level 1 and 2 are additive and determine cRF size and shape, while lateral connections within level 1 are modulatory and affect the cortical range of synchronization. Input during development is mimicked by spike trains with spatially homogeneous properties and a confined temporal correlation width. During learning, the homogeneous lateral coupling shrinks to limited coupling structures defining synchronization and related association fields (AF). The size of level-1 synchronization fields determines the lateral coupling range of developing level-1-to-2 connections and, thus, the size of level-2 cRFs, even if the feedforward connections have distance-independent delays. AFs and cRFs increase with spike velocity in the lateral network and temporal correlation width of the input. Our results suggest that AF size of V1 and cRF size of V2 neurons are confined during learning by the temporal width of input correlations and the spike velocity in lateral connections without the need of visual experience. During learning from visual experience, a similar influence of AF size on the cRF size may be operative at successive levels of processing, including other parts of the visual system. [References: 35]
机译:从视网膜到较高的视觉中心,经典感受野(cRF)的大小会增加。本工作显示了时间特性,尤其是横向峰值速度和峰值输入相关性如何在没有视觉体验的情况下会影响cRF大小和位置。我们展示了如果赫比学习主导了早期发展,那么这些特性如何与皮质同步的空间范围相关。为此,开发了视觉皮层的两个连续级别(例如,区域V1和V2)的大大简化的模型。它由在横向连接中具有恒定峰值速度的尖刺神经元的视网膜网构成。 1级和2级之间的前馈连接是相加的,并确定cRF的大小和形状,而1级内的横向连接是可调节的,并且会影响同步皮层范围。在开发过程中的输入由具有空间均一特性和有限时间相关宽度的峰值序列模拟。在学习期间,同质横向耦合缩小为定义同步和相关关联字段(AF)的有限耦合结构。级别1同步字段的大小确定了发展的级别1到2连接的横向耦合范围,并因此确定级别2 cRF的大小,即使前馈连接具有与距离无关的延迟。 AF和cRF随横向网络中的峰值速度和输入的时间相关宽度而增加。我们的结果表明,在学习过程中,输入相关性的时间宽度和横向连接中的峰值速度限制了V1神经元的AF大小和V2神经元的cRF大小,而无需视觉经验。在从视觉体验中学习期间,AF大小对cRF大小的类似影响可能会在连续的处理级别(包括视觉系统的其他部分)上起作用。 [参考:35]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号