...
首页> 外文期刊>Neurotoxicity research >Wallerian-like degeneration of central neurons after synchronized and geometrically registered mass axotomy in a three-compartmental microfluidic chip.
【24h】

Wallerian-like degeneration of central neurons after synchronized and geometrically registered mass axotomy in a three-compartmental microfluidic chip.

机译:在三室微流控芯片中进行同步且几何对齐的集体切开术后,中央神经元呈沃勒样变性。

获取原文
获取原文并翻译 | 示例

摘要

Degeneration of central axons may occur following injury or due to various diseases and it involves complex molecular mechanisms that need to be elucidated. Existing in vitro axotomy models are difficult to perform, and they provide limited information on the localization of events along the axon. We present here a novel experimental model system, based on microfluidic isolation, which consists of three distinct compartments, interconnected by parallel microchannels allowing axon outgrowth. Neurons cultured in one compartment successfully elongated their axons to cross a short central compartment and invade the outermost compartment. This design provides an interesting model system for studying axonal degeneration and death mechanisms, with a previously impossible spatial and temporal control on specific molecular pathways. We provide a proof-of-concept of the system by reporting its application to a well-characterized experimental paradigm, axotomy-induced Wallerian degeneration in primary central neurons. Using this model, we applied localized central axotomy by a brief, isolated flux of detergent. We report that mouse embryonic cortical neurons exhibit rapid Wallerian-like distal degeneration but no somatic death following central axotomy. Distal axons show progressive degeneration leading to axonal beading and cytoskeletal fragmentation within a few hours after axotomy. Degeneration is asynchronous, reminiscent of in vivo Wallerian degeneration. Axonal cytoskeletal fragmentation is significantly delayed with nicotinamide adenine dinucleotide pretreatment, but it does not change when distal calpain or caspase activity is inhibited. These findings, consistent with previous experiments in vivo, confirm the power and biological relevance of this microfluidic architecture.
机译:中枢轴突的变性可能在受伤后或由于各种疾病而发生,并且涉及需要阐明的复杂分子机制。现有的体外轴切模型很难执行,并且它们在沿轴突的事件定位方面提供的信息有限。我们在此介绍一种基于微流体隔离的新型实验模型系统,该系统由三个不同的部分组成,这些部分由平行的微通道互连,从而允许轴突向外生长。在一个隔室中培养的神经元成功地延长了它们的轴突,以穿过一个短的中央隔室并侵入最外面的隔室。此设计提供了一个有趣的模型系统,用于研究轴突变性和死亡机制,并且以前无法在特定分子途径上进行时空控制。我们通过报告其在典型的实验范式中的应用,提供了系统的概念验证,该范例是在中枢神经元中由轴突切开术引起的Wallerian变性。使用该模型,我们通过短暂,隔离的清洁剂通量进行局部中心轴切术。我们报告说,小鼠胚胎皮质神经元表现出快速的Wallerian样远端变性,但中心轴切术后没有躯体死亡。远端轴突显示进行性变性,导致在轴突切开后数小时内发生轴突成珠和细胞骨架破碎。变性是异步的,让人想起体内的瓦勒变性。烟酰胺腺嘌呤二核苷酸预处理显着延迟了轴突的细胞骨架断裂,但是当远端钙蛋白酶或半胱天冬酶活性受到抑制时,轴突的细胞分裂不会改变。这些发现与先前的体内实验一致,证实了这种微流体体系结构的功能和生物学相关性。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号