首页> 外文期刊>Neural Networks: The Official Journal of the International Neural Network Society >Joining distributed pattern processing and homeostatic plasticity in recurrent on-center off-surround shunting networks: noise, saturation, short-term memory, synaptic scaling, and BDNF.
【24h】

Joining distributed pattern processing and homeostatic plasticity in recurrent on-center off-surround shunting networks: noise, saturation, short-term memory, synaptic scaling, and BDNF.

机译:在循环中心偏心分流网络中加入分布式模式处理和稳态可塑性:噪声,饱和度,短期记忆,突触缩放和BDNF。

获取原文
获取原文并翻译 | 示例
       

摘要

The activities of neurons vary within small intervals that are bounded both above and below, yet the inputs to these neurons may vary many-fold. How do networks of neurons process distributed input patterns effectively under these conditions? If a large number of input sources intermittently converge on a cell through time, then a serious design problem arises: if cell activities are sensitive to large inputs, then why do not small inputs get lost in internal system noise? If cell activities are sensitive to small inputs, then why do they not all saturate at their maximum values in response to large inputs and thereby become incapable of processing analog differences in inputs across an entire network? Grossberg (1973) solved this noise-saturation dilemma using neurons that obey the membrane, or shunting, equations of neurophysiology interacting in recurrent and non-recurrent on-center off-surround networks, and showed how different signal functions can influence the activity patterns that the network stores in short-term memory. These results demonstrated that maintaining a balance between excitation and inhibition in a neural network is essential to process distributed patterns of inputs and signals without experiencing the catastrophies of noise or saturation. However, shunting on-center off-surround networks only guarantee that cell activities remain sensitive to the relative sizes of inputs and recurrent signals, but not that they will use the full dynamic range that each cell can support. Additional homeostatic plasticity mechanisms are needed to anchor the activities of networks to exploit their full dynamic range. This article shows how mechanisms of synaptic scaling can be incorporated within recurrent on-center off-surround networks in such a way that their pattern processing capabilities, including the ability to make winner-take-all decisions, is preserved. This model generalizes the synaptic scaling model of van Rossum, Bi, & Turrigiano (2000) for a single cell to a pattern-processing network of shunting cells that is capable of short-term memory storage, including a representation of how BDNF may homeostatically scale the strengths of excitatory and inhibitory synapses in opposite directions.
机译:神经元的活动在一个上下上下限的小间隔内变化,但是这些神经元的输入可能变化很多倍。在这些条件下,神经元网络如何有效处理分布式输入模式?如果大量输入源通过时间间歇地聚集在一个单元上,则会出现严重的设计问题:如果单元活动对大输入敏感,那么为什么小输入不会在内部系统噪声中丢失?如果单元格活动对较小的输入敏感,那么为什么它们不响应于较大的输入而全部都达到最大值,从而无法处理整个网络中输入的模拟差异? Grossberg(1973)使用服从递归和非递归中心非环绕网络相互作用的神经生理学方程式的膜或分流神经元解决了这种噪声饱和的难题,并展示了不同的信号功能如何影响活动模式网络存储在短期内存中。这些结果表明,在神经网络中保持激励与抑制之间的平衡对于处理输入和信号的分布式模式而不会遇到噪声或饱和的灾难至关重要。但是,在中心附近的分流网络上进行分流只能保证小区活动对输入和循环信号的相对大小保持敏感,但不能保证它们将使用每个小区可以支持的全部动态范围。需要其他的稳态可塑性机制来锚定网络的活动,以充分利用其动态范围。本文说明了如何将突触缩放机制整合到循环中心非外围网络中,从而保留其模式处理能力,包括做出赢家通吃的决策的能力。该模型将van Rossum,Bi和Turrigiano(2000)的单个细胞的突触缩放模型推广到能够短期存储的分流细胞模式处理网络,包括BDNF如何稳态缩放的表示。相反方向的兴奋性和抑制性突触的强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号