首页> 外文期刊>Neural Networks: The Official Journal of the International Neural Network Society >Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain-computer interface algorithms.
【24h】

Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain-computer interface algorithms.

机译:偏差,最佳线性估计以及基于尖峰的脑机接口算法的开环仿真与闭环性能之间的差异。

获取原文
获取原文并翻译 | 示例
           

摘要

The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor neural prosthetic technology has spurred an increased interest in the algorithms by which motor intention can be inferred. The simplest of these algorithms is the population vector algorithm (PVA), where the activity of each cell is used to weight a vector pointing in that neuron's preferred direction. Off-line, it is possible to show that more complicated algorithms, such as the optimal linear estimator (OLE), can yield substantial improvements in the accuracy of reconstructed hand movements over the PVA. We call this open-loop performance. In contrast, this performance difference may not be present in closed-loop, on-line control. The obvious difference between open and closed-loop control is the ability to adapt to the specifics of the decoder in use at the time. In order to predict performance gains that an algorithm may yield in closed-loop control, it is necessary to build a model that captures aspects of this adaptation process. Here we present a framework for modeling the closed-loop performance of the PVA and the OLE. Using both simulations and experiments, we show that (1) the performance gain with certain decoders can be far less extreme than predicted by off-line results, (2) that subjects are able to compensate for certain types of bias in decoders, and (3) that care must be taken to ensure that estimation error does not degrade the performance of theoretically optimal decoders.
机译:数十个同时记录的神经元的活动可用于控制计算机屏幕上机械臂或光标的移动。这种运动神经假体技术引起了人们对可以推断运动意图的算法的兴趣。这些算法中最简单的是种群矢量算法(PVA),其中,每个细胞的活动都用于加权指向该神经元首选方向的矢量。离线显示可能会发现,更复杂的算法(例如最佳线性估计器(OLE))可以在PVA上重建手部运动的准确性产生实质性的提高。我们称这种开环性能。相反,在闭环在线控制中可能不存在这种性能差异。开环和闭环控制之间的明显区别是能够适应当时使用的解码器的特性。为了预测算法在闭环控制中可能产生的性能提升,有必要构建一个模型来捕获该自适应过程的各个方面。在这里,我们提出了一个用于对PVA和OLE的闭环性能进行建模的框架。通过仿真和实验,我们表明(1)某些解码器的性能增益可能远不如离线结果所预测的那样极端;(2)对象能够补偿解码器中的某些类型的偏差,并且( 3)必须注意确保估计误差不会降低理论上最佳解码器的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号