首页> 外文期刊>Near surface geophysics >Reconstruction of discrete resistivity targets using coupled artificial neural networks and watershed algorithms
【24h】

Reconstruction of discrete resistivity targets using coupled artificial neural networks and watershed algorithms

机译:使用耦合人工神经网络和分水岭算法重建离散电阻率目标

获取原文
获取原文并翻译 | 示例
           

摘要

Estimating the dimensions (defined here as width, height and depth of burial) of discrete targets within resistivity models produced as a result of applying smoothness constraints in most inversion algorithms is difficult, especially when targets are closely spaced. Here we couple an image processing technique (watershed algorithm) with a trained Artificial Neural Network (ANN) model to arrive at predictions of the geometry and resistivity of discrete targets from an initial smoothness constraint resistivity model. These predictions are compared with those obtained from (1) applying the watershed algorithm alone, (2) inversion using the regular L1 norm and (3) when a smoothing disconnect is defined using image processing with data subsequently re-inverted to arrive at a revised model estimate. Synthetic studies were conducted on a single cavity model, a model for two widely spaced cavities (spacing ? unit electrode spacing), a model for two closely spaced cavities (spacing < unit electrode spacing) and a model for three closely spaced cavities (spacing < unit electrode spacing). In all model scenarios, the average root mean square (RMS) model error using our ANN approach is below 1 whilst the average combined RMS model error when including target resistivity is 35 for the single cavity, 30 for widely spaced targets and 75 for the closely spaced targets. Despite the higher errors in the closely spaced cavity models, application of the algorithm confirms the presence of multiple features, which is not ascertainable from the smooth inversion, or even when using a disconnect constraint. The ANN derived model significantly reduces the RMS misfit between synthetic and inverted models. We demonstrate the approach using field measurements collected over a precisely known void and also apply the method to smooth resistivity images obtained from measurements collected over an archaeological site at Qurnet Murai, Luxor city, Egypt.
机译:在大多数反演算法中,由于应用平滑约束而产生的电阻率模型中,估计离散目标的尺寸(此处定义为埋葬的宽度,高度和深度)是困难的,尤其是当目标之间的距离很近时。在这里,我们将图像处理技术(分水岭算法)与训练有素的人工神经网络(ANN)模型相结合,以根据初始平滑度约束电阻率模型来预测离散目标的几何形状和电阻率。将这些预测与以下结果进行比较:(1)仅应用分水岭算法;(2)使用常规L1规范进行反演;(3)当使用图像处理定义平滑断开连接时,随后对数据进行重新求反以得出修正值模型估计。在单腔模型,两个相距较远的腔体模型(间距?单位电极间距),两个相距较近的腔体模型(间距<单位电极间距)以及三个相距较近的腔体模型(间距<单位电极间距)。在所有模型场景中,使用我们的ANN方法得出的平均均方根(RMS)模型误差均小于1,而包含目标电阻率的平均组合RMS模型误差对于单个腔而言为35,对于宽间隔目标而言为30,对于紧密距离而言为75间隔的目标。尽管在紧密间隔的腔体模型中存在较高的误差,但该算法的应用仍可确认存在多个特征,这无法从平滑反演甚至使用断开约束条件中确定。 ANN派生模型显着减少了合成模型和反向模型之间的RMS失配。我们演示了使用在精确已知的空隙上收集的野外测量结果的方法,并将该方法应用于从在埃及卢克索市Qurnet Murai的考古现场收集的测量结果中获得的电阻率图像平滑的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号