首页> 外文期刊>Near surface geophysics >Relative hydraulic conductivity and effective saturation from Earth's field nuclear magnetic resonance a method for assessing the vadose zone
【24h】

Relative hydraulic conductivity and effective saturation from Earth's field nuclear magnetic resonance a method for assessing the vadose zone

机译:相对的水力传导率和地球场核磁共振产生的有效饱和度是评估渗流带的一种方法

获取原文
获取原文并翻译 | 示例
       

摘要

Beside the water content, petrophysical nuclear magnetic resonance (NMR) techniques in the lab and in boreholes as well as in the field, provide estimates of the hydraulic conductivity of water saturated sediments and rocks. In the vadose zone, the hydraulic conductivity is a function of the water saturation. Regarding the characterization of the vadose zone, the magnetic resonance sounding (MRS) method is expected to have great potential. However, so far, the petrophysical relationship of the hydraulic properties under partial saturation conditions and the NMR parameters in the Earth's magnetic field is not fully understood. In this study, laboratory NMR experiments in the Earth's field (EFNMR) are performed in comparison to conventional high field NMR (HFNMR). Sand-filled columns were used to generate partially saturated conditions by simulating capillary fringes (grain sizes from fine to coarse). We investigate the ability of both NMR techniques to determine the residual water content and the dependency of the NMR relaxation times on the water saturation degree. We note that EFNMR measurements tend to underestimate the residual water content due to long measurement dead times. Furthermore, it shows that the HFNMR relaxation time T2 as a function of the saturation, behaves according to the Brooks-Corey model that describes the water retention function and thus allows for the prediction of the relative hydraulic conductivity K rel. The EFNMR relaxation time T2 as a function of the saturation degree differs from the BrooksCorey expectation due to the influence of the dephasing relaxation rate that is, in general, responsible for the difference of T2 and T2. We assume that the dephasing relaxation rate itself, when induced by internal magnetic field gradients, depends on the water saturation. We introduce a model that accounts for this dependency with a weighting factor for the dephasing relaxation rate, given as a power law of the saturation degree. The model enables the description of T 2 as a function of the water saturation and thus provides the estimation of Krel; from T2. We compare the NMR based Krel predictions with the Krel functions estimated from gravity induced outflow experiments at the columns. The results are in agreement within half a decade for every sand sample of the study. In principle, the suggested approach can be applied for estimating Krel, in situ by MRS measurements in the vadose zone. We discuss the potential and limitations of this approach for MRS.
机译:除了含水量,实验室,井眼以及野外的岩石物理核磁共振(NMR)技术还可以估算出水饱和沉积物和岩石的水力传导率。在渗流区内,水力传导率是水饱和度的函数。关于渗流区的特征,磁共振测深法(MRS)有望具有巨大的潜力。但是,到目前为止,还没有完全了解部分饱和条件下的水力性质与地球磁场中的NMR参数的岩石物理关系。在这项研究中,与常规的高场NMR(HFNMR)相比,在地磁场(EFNMR)中进行了实验室NMR实验。填充沙子的柱子通过模拟毛细条纹(粒度从细到粗)来产生部分饱和的条件。我们研究了两种NMR技术确定残留水含量的能力以及NMR弛豫时间对水饱和度的依赖性。我们注意到,由于较长的测量停滞时间,EFNMR测量往往会低估残留的水含量。此外,它表明,HFNMR弛豫时间T2作为饱和度的函数,根据描述保水函数的Brooks-Corey模型表现,因此可以预测相对水导率K rel。 EFNMR弛豫时间T2作为饱和度的函数与BrooksCorey期望值有所不同,这是由于移相弛豫率的影响,而移相弛豫率通常是造成T2和T2差异的原因。我们假设当由内部磁场梯度引起时,移相弛豫率本身取决于水饱和度。我们引入了一个模型,该模型使用相移弛豫率的加权因子来说明这种依赖性,该模型以饱和度的幂定律给出。该模型可以根据水饱和度来描述T 2,从而提供Krel的估计。从T2。我们将基于NMR的Krel预测与从重力感应流出实验估算的Krel函数进行比较。对于该研究的每个砂样,结果在五年之内是一致的。原则上,建议的方法可用于通过渗流区中的MRS测量原位估计Krel。我们讨论了这种方法对MRS的潜力和局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号