首页> 外文期刊>Nature geoscience >High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth
【24h】

High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth

机译:地球上最深的海沟中沉积物中微生物碳的转化率很高

获取原文
获取原文并翻译 | 示例
           

摘要

Microbes control the decomposition of organic matter inmarine sediments. Decomposition, in turn, contributes to oceanic nutrient regeneration and influences the preservation of organic carbon. Generally, rates of benthic decomposition decline with increasing water depth, although given the vast extent of the abyss, deep-sea sediments are quantitatively important for the global carbon cycle. However, the deepest regions of the ocean have remained virtually unexplored. Here, we present observations of microbial activity in sediments at Challenger Deep in the Mariana Trench in the central west Pacific, which at almost 11,000 m depth represents the deepest oceanic site on Earth. We used an autonomous micro-profiling system to assess benthic oxygen consumption rates. We show that although the presence of macrofauna is restricted at Challenger Deep, rates of biological consumption of oxygen are high, exceeding rates at a nearby 6,000-m-deep site by a factor of two. Consistently, analyses of sediments collected from the two sites reveal higher concentrations of microbial cells at Challenger Deep. Furthermore, analyses of sediment 210 Pb profiles reveal relatively high sediment deposition in the trench. We conclude that the elevated deposition of organic matter at Challenger Deep maintains intensified microbial activity at the extreme pressures that characterize this environment.
机译:微生物控制着海洋沉积物中有机物的分解。分解反过来有助于海洋养分的再生,并影响有机碳的保存。通常,底栖动物的分解速度会随着水深的增加而下降,尽管考虑到深渊的广泛程度,深海沉积物对于全球碳循环在数量上很重要。但是,海洋最深的区域实际上仍未开发。在这里,我们介绍中西部太平洋中部马里亚纳海沟挑战者深处沉积物中微生物活动的观察结果,其近11,000 m的深度代表了地球上最深的海洋站点。我们使用自治的微轮廓分析系统评估底栖氧气消耗率。我们显示,尽管挑战者号深处大型动物的存在受到限制,但氧气的生物消耗率很高,比附近6000米深处的速率高两倍。一致地,从这两个地点收集的沉积物的分析表明,挑战者深处的微生物细胞浓度较高。此外,对沉积物210 Pb剖面的分析表明,沟槽中的沉积物相对较高。我们得出的结论是,挑战者深处有机物的沉积增加,在这种环境所具有的极端压力下,微生物活动得以增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号