...
【24h】

Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements

机译:使用感官加权来模拟运河,耳石和视觉提示对空间方向和眼睛运动的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The sensory weighting model is a general model of sensory integration that consists of three processing layers. First, each sensor provides the central nervous system (CNS) with information regarding a specific physical variable. Due to sensor dynamics, this measure is only reliable for the frequency range over which the sensor is accurate. Therefore, we hypothesize that the CNS improves on the reliability of the individual sensor outside this frequency range by using information from other sensors, a process referred to as "frequency completion." Frequency completion uses internal models of sensory dynamics. This "improved" sensory signal is designated as the "sensory estimate" of the physical variable. Second, before being combined, information with different physical meanings is first transformed into a common representation; sensory estimates are converted to intermediate estimates. This conversion uses internal models of body dynamics and physical relationships. Third, several sensory systems may provide information about the same physical variable (e.g., semicircular canals and vision both measure self-rotation). Therefore, we hypothesize that the "central estimate" of a physical variable is computed as a weighted sum of all available intermediate estimates of this physical variable, a process referred to as "multicue weighted averaging." The resulting central estimate is fed back to the first two layers. The sensory weighting model is applied to three-dimensional (3D) visual-vestibular interactions and their associated eye movements and perceptual responses. The model inputs are 3D angular and translational stimuli. The sensory inputs are the 3D sensory signals coming from the semicircular canals, otolith organs, and the visual system. The angular and translational components of visual movement are assumed to be available as separate stimuli measured by the visual system using retinal slip and image deformation. In addition, both tonic ("regular") and phasic ("irregular") otolithic afferents are implemented. Whereas neither tonic nor phasic otolithic afferents distinguish gravity from linear acceleration, the model uses tonic afferents to estimate gravity and phasic afferents to estimate linear acceleration. The model outputs are the internal estimates of physical motion variables and 3D slow-phase eye movements. The model also includes a smooth pursuit module. The model matches eye responses and perceptual effects measured during various motion paradigms in darkness (e.g., centered and eccentric yaw rotation about an earthvertical axis, yaw rotation about an earth-horizontal axis) and with visual cues (e.g., stabilized visual stimulation or optokinetic stimulation). [References: 105]
机译:感觉加权模型是由三个处理层组成的感觉整合的通用模型。首先,每个传感器为中枢神经系统(CNS)提供有关特定物理变量的信息。由于传感器的动态特性,该措施仅在传感器精确的频率范围内是可靠的。因此,我们假设CNS通过使用来自其他传感器的信息来改善该频率范围之外的单个传感器的可靠性,此过程称为“频率完成”。频率完成使用感觉动力学的内部模型。该“改善的”感觉信号被指定为物理变量的“感觉估计”。其次,在将具有不同物理含义的信息进行组合之前,首先将其转换为通用表示形式。感官估计会转换为中间估计。这种转换使用身体动力学和身体关系的内部模型。第三,几个感觉系统可以提供关于相同物理变量的信息(例如,半圆形的管和视线都测量自转)。因此,我们假设将物理变量的“中心估计”计算为该物理变量的所有可用中间估计的加权和,此过程称为“多线索加权平均”。所得的中心估计值将反馈到前两层。感觉加权模型适用于三维(3D)视觉-前庭相互作用及其相关的眼睛运动和知觉反应。模型输入是3D角度和平移刺激。感觉输入是来自半规管,耳石器官和视觉系统的3D感觉信号。假定视觉运动的角向和平移分量可以作为单独的刺激而获得,由视觉系统使用视网膜滑移和图像变形来测量。另外,实施了补药(“常规”)和阶段性(“不常规”)耳石传入。尽管补品听觉和相位耳石听觉都无法将重力与线性加速度区分开,但是该模型使用了滋补听觉来估计重力,而相位听觉来估计线性加速度。模型输出是物理运动变量和3D慢相眼动的内部估计。该模型还包括平滑追踪模块。该模型将在黑暗中的各种运动范例(例如,围绕地垂直轴的偏心偏心旋转,围绕地球-水平轴的偏航旋转)和视觉提示(例如,稳定的视觉刺激或光动力刺激)下测得的眼睛反应和知觉效果进行匹配)。 [参考:105]

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号