...
首页> 外文期刊>Nano: brief reports and reviews >Monte Carlo and Experimental Magnetic Studies of Molecular Spintronics Devices
【24h】

Monte Carlo and Experimental Magnetic Studies of Molecular Spintronics Devices

机译:蒙特卡罗和分子自旋电子学器件的实验磁性研究

获取原文
获取原文并翻译 | 示例
           

摘要

Molecule-based spintronics devices (MSDs) are highly promising candidates for discovering advanced logic and memory computer units. An advanced MSD will require the placement of paramagnetic molecules between the two ferromagnetic (FM) electrodes. Due to extreme fabrication challenges, only a couple of experimental studies could be performed to understand the effect of magnetic molecules on the overall magnetic and transport properties of MSDs. To date, theoretical studies mainly focused on charge and spin transport aspects of MSDs; there is a dearth of knowledge about the effect of magnetic molecules on the magnetic properties of MSDs. This paper investigates the effect of magnetic molecules, with a net spin, on the magnetic properties of 2D MSDs via Monte Carlo (MC) simulations. Our MC simulations encompass a wide range of MSDs that can be realized by establishing different kinds of magnetic interactions between molecules and FM electrodes at different temperatures. The MC simulations show that ambient thermal energy strongly influenced the molecular coupling effect on the MSD. We studied the nature and strength of molecule couplings (FM and antiferromagnetic) with the two electrodes on the magnetization, specific heat and magnetic susceptibility of MSDs. For the case when the nature of molecule interaction was FM with one electrode and antiferromagnetic with another electrode the overall magnetization shifted toward zero. In this case, the effect of molecules was also a strong function of the nature and strength of direct coupling between FM electrodes. In the case when molecules make opposite magnetic couplings with the two FM electrodes, the MSD model used for MC studies resembled with the magnetic tunnel junction based MSD. The experimental magnetic studies on these devices are in agreement with our theoretical MC simulations results. Our MC simulations will enable the fundamental understanding and designing of a wide range of novel spintronics devices utilizing a variety of molecules, nanoclusters and quantum dots as the device elements.
机译:基于分子的自旋电子器件(MSD)是发现高级逻辑和存储计算机单元的极有希望的候选者。高级MSD将需要在两个铁磁(FM)电极之间放置顺磁性分子。由于极端的制造挑战,只能进行几项实验研究才能了解磁性分子对MSD整体磁性和传输性能的影响。迄今为止,理论研究主要集中在MSD的电荷和自旋输运方面。关于磁性分子对MSDs磁性的影响尚缺乏知识。本文通过蒙特卡罗(MC)模拟研究了具有净自旋的磁性分子对2D MSD磁性的影响。我们的MC模拟涵盖了多种MSD,可以通过在不同温度下在分子与FM电极之间建立不同种类的磁相互作用来实现。 MC模拟表明,环境热能强烈影响MSD的分子偶联效应。我们研究了分子电极与两个电极的耦合(FM和反铁磁)的性质和强度,以及MSD的磁化,比热和磁化率。对于分子相互作用的性质是一个电极为FM且另一电极为反铁磁性的情况,则总磁化强度趋向于零。在这种情况下,分子的作用也是FM电极之间直接耦合的性质和强度的强大函数。当分子与两个FM电极发生相反的磁耦合时,用于MC研究的MSD模型类似于基于磁隧道结的MSD。在这些设备上进行的实验磁性研究与我们的理论MC仿真结果一致。我们的MC模拟将使人们能够对使用各种分子,纳米团簇和量子点作为设备元素的新型自旋电子学器件进行基本的了解和设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号