...
首页> 外文期刊>Nanotechnology >Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters
【24h】

Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters

机译:金纳米粒子和纳米团簇光热疗法的光放大

获取原文
获取原文并翻译 | 示例

摘要

Recently, several groups (Anderson, Halas, Zharov, and their co-workers, 2003; El-Sayed and co-workers, 2006) demonstrated, through pioneering results, the great potential of photothermal (PT) therapy for the selective treatment of cancer cells, bacteria, viruses, and DNA targeted with gold nanospheres, nanoshells, nanorods, and nanosphere clusters. However, the current understanding of the relationship between the nanoparticle/cluster parameters (size, shape, particle/cluster structure, etc) and the efficiency of PT therapy is limited. Here, we report theoretical simulations aimed at finding the optimal single-particle and cluster structures to achieve its maximal absorption, which is crucial for PT therapeutic effects. To characterize the optical amplification in laser-induced thermal effects, we introduce relevant parameters such as the ratio of the absorption cross section to the gold mass of a single-particle structure and absorption amplification, defined as the ratio of cluster absorption to the total absorption of non-interacting particles. We consider the absorption efficiency of single nanoparticles (gold spheres, rods, and silica/gold nanoshells), linear chains, 2D lattice arrays, 3D random volume clusters, and the random aggregated TV-particle ensembles on the outer surface of a larger dielectric sphere, which mimic aggregation of nanosphere bioconjugates on or within cancer cells. The cluster particles are bare or biopolymer-coated gold nanospheres. The light absorption of cluster structures is studied by using the generalized multiparticle Mie solution and the T-matrix method. The gold nanoshells with (silica core diameter)/(gold shell thickness) parameters of (50-100)/(3-8) nm and nanorods with minor/major sizes of (15-20)/(50-70) nm are shown to be more efficient PT labels and sensitizers than the equivolume solid single gold spheres. In the case of nanosphere clusters, the interparticle separations and the short linear-chain fragments are the main structural parameters determining the absorption efficiency and its spectral shifting to the red. Although we have not found a noticeable dependence of absorption amplification on the cluster sphere size, 20-40 nm particles are found to be most effective, in accordance with our experimental observations. The long-wavelength absorption efficiency of random clusters increases with the cluster particle number N at small TV and reveals a saturation behaviour at N > 20.
机译:最近,几个小组(Anderson,Halas,Zharov及其同事,2003年; El-Sayed及其同事,2006年)通过开创性的结果证明了光热(PT)治疗对于选择性治疗癌症的巨大潜力。以金纳米球,纳米壳,纳米棒和纳米球簇为目标的细胞,细菌,病毒和DNA。但是,目前对纳米颗粒/簇参数(尺寸,形状,颗粒/簇结构等)与PT治疗效率之间关系的理解受到限制。在这里,我们报告理论模拟旨在寻找最佳的单颗粒和团簇结构,以实现其最大吸收,这对于PT治疗效果至关重要。为了表征激光诱导的热效应中的光学放大,我们引入了相关参数,例如吸收截面与单颗粒结构的金质量之比和吸收放大率(定义为簇吸收与总吸收之比)非相互作用的颗粒。我们考虑了单个纳米颗粒(金球,棒和二氧化硅/金纳米壳),线性链,2D晶格阵列,3D随机体积簇以及较大介电球外表面上随机聚集的电视粒子集合的吸收效率。 ,它模拟癌细胞上或内的纳米球生物结合物的聚集。团簇颗粒是裸露的或生物聚合物包被的金纳米球。通过使用广义多粒子Mie溶液和T-矩阵方法研究团簇结构的光吸收。 (二氧化硅芯直径)/(金壳厚度)参数为(50-100)/(3-8)nm的金纳米壳和具有(15-20)/(50-70)nm的小/大尺寸的纳米棒为与等体积的固态单金球相比,它显示出更有效的PT标签和敏化剂。在纳米球团簇的情况下,颗粒间的分离和短的线性链片段是决定吸收效率及其光谱向红色偏移的主要结构参数。尽管我们尚未发现吸收放大率对簇球尺寸的显着依赖性,但根据我们的实验观察,发现20-40 nm的颗粒最为有效。在小电视下,随机团簇的长波吸收效率随团簇颗粒数N的增加而增加,并且在N> 20时表现出饱和行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号