首页> 外文期刊>Nano letters >Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils
【24h】

Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils

机译:蜘蛛丝原纤维的变形,强度和韧性的分子和纳米结构机理

获取原文
获取原文并翻译 | 示例
           

摘要

Spider dragline silk is one of the strongest, most extensible and toughest biological materials known, exceeding the properties of many engineered materials including steel. Silk features a hierarchical architecture where highly organized, densely H-bonded beta-sheet nanocrystals are arranged within a semiamorphous protein matrix consisting of 3_1-helices and beta-turn protein structures. By using a bottom-up molecular-based approach, here we develop the first spider silk mesoscale model, bridging the scales from Angstroms to tens to potentially hundreds of nanometers. We demonstrate that the specific nanoscale combination of a crystalline phase and a semiamorphous matrix is crucial to achieve the unique properties of silks. Our results reveal that the superior mechanical properties of spider silk can be explained solely by structural effects, where the geometric confinement of beta-sheet nanocrystals, combined with highly extensible semiamorphous domains, is the key to reach great strength and great toughness, despite the dominance of mechanically inferior chemical interactions such as H-bonding. Our model directly shows that semiamorphous regions govern the silk behavior at small deformation, unraveling first when silk is being stretched and leading to the large extensibility of the material. Conversely, beta-sheet nanocrystals play a significant role in defining the mechanical behavior of silk at large-deformation. In particular, the ultimate tensile strength of silk is controlled by the strength of beta-sheet nanocrystals, which is directly related to their size, where small beta-sheet nanocrystals are crucial to reach outstanding levels of strength and toughness. Our results and mechanistic insight directly explain recent experimental results, where it was shown that a significant change in the strength and toughness of silk can be achieved solely by tuning the size of beta-sheet nanocrystals. Our findings help to unveil the material design strategy that enables silk to achieve superior material performance despite simple and inferior material constituents. This concept could lead to a new materials design paradigm, where enhanced functionality is not achieved using complex building blocks but rather through the utilization of simple repetitive constitutive elements arranged in hierarchical structures from nano to macro.
机译:蜘蛛式拉铲丝是已知的最强,最可延展和最坚韧的生物材料之一,超过了包括钢在内的许多工程材料的特性。丝绸具有层次结构,其中高度组织化的,密集的H键合的β-折叠纳米晶体排列在由3_1-螺旋和β-转角蛋白质结构组成的半非晶蛋白质基质内。通过使用自下而上的基于分子的方法,在这里我们开发了第一个蜘蛛丝中尺度模型,将尺度从埃桥接到数十到可能的数百纳米。我们证明了晶相和半非晶基质的特定纳米级组合对于实现丝绸的独特性能至关重要。我们的结果表明,蜘蛛丝的优异机械性能只能由结构效应来解释,尽管具有优势,但β片状纳米晶体的几何限制以及高度可扩展的半非晶域的结合是获得高强度和高韧性的关键机械性较差的化学相互作用(如氢键)的原因。我们的模型直接表明,半非晶区域在较小的变形下控制着丝绸的行为,当丝绸被拉伸时会首先散开,从而导致材料具有较大的延展性。相反,β片状纳米晶体在定义大变形丝的机械行为方面起着重要作用。特别地,丝线的极限拉伸强度受β-片状纳米晶体的强度控制,这与它们的尺寸直接相关,其中小的β-片状纳米晶体对于达到出色的强度和韧性至关重要。我们的结果和机制的见解直接解释了最近的实验结果,结果表明,仅通过调节β片状纳米晶体的尺寸就可以实现丝绸强度和韧性的显着变化。我们的发现有助于揭示一种材料设计策略,尽管材料成分简单且劣等,该策略仍可使丝绸获得出色的材料性能。这个概念可能会导致一种新的材料设计范式,其中不能使用复杂的构造块来实现增强的功能,而是通过利用排列在从纳米到宏观的层次结构中的简单重复组成性元素来实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号