...
首页> 外文期刊>Nano letters >Nanowire-Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals
【24h】

Nanowire-Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals

机译:纳米线-细菌杂合体,用于将太阳能二氧化碳辅助固定在增值化学品上

获取原文
获取原文并翻译 | 示例
           

摘要

Direct solar-powered production of value-added chemicals from CO2 and H2O, a process that mimics natural photosynthesis, is of fundamental and practical interest. In natural photosynthesis, CO2 is first reduced to common biochemical building blocks using solar energy, which are subsequently used for the synthesis of the complex mixture of molecular products that form biomass. Here we report an artificial photosynthetic scheme that functions via a similar two-step process by developing a biocompatible light-capturing nanowire array that enables a direct interface with microbial systems. As a proof of principle, we demonstrate that a hybrid semiconductor nanowirebacteria system can reduce CO2 at neutral pH to a wide array of chemical targets, such as fuels, polymers, and complex pharmaceutical precursors, using only solar energy input. The high-surface-area silicon nanowire array harvests light energy to provide reducing equivalents to the anaerobic bacterium, Sporomusa ovata, for the photoelectrochemical production of acetic acid under aerobic conditions (21% O-2) with low overpotential (eta < 200 mV), high Faradaic efficiency (up to 90%), and long-term stability (up to 200 h). The resulting acetate (similar to 6 g/L) can be activated to acetyl coenzyme A (acetyl-CoA) by genetically engineered Escherichia coli and used as a building block for a variety of value-added chemicals, such as n-butanol, polyhydroxybutyrate (PHB) polymer, and three different isoprenoid natural products. As such, interfacing biocompatible solid-state nanodevices with living systems provides a starting point for developing a programmable system of chemical synthesis entirely powered by sunlight.
机译:由太阳能和二氧化碳直接生产增值化学品(模仿自然光合作用的过程)具有根本和实际意义。在自然光合作用中,首先使用太阳能将CO2还原为常见的生物化学构件,然后将其用于合成形成生物质的分子产物的复杂混合物。在这里,我们报告了一种人工光合作用方案,该方案通过开发生物相容性的光捕获纳米线阵列来实现与微生物系统的直接接口,该程序通过相似的两步过程起作用。作为原理上的证明,我们证明了混合半导体纳米线细菌系统可以仅使用太阳能输入,就能将中性pH值下的CO2降低至各种化学目标,例如燃料,聚合物和复杂的药物前体。高表面积硅纳米线阵列收集光能以提供与厌氧细菌卵形孢子菌(Sporomusa ovata)相同的还原当量,用于在有氧条件下(21%O-2)进行光电化学生产乙酸,且过电位低(eta <200 mV) ,法拉第效率高(高达90%)和长期稳定性(长达200小时)。所得乙酸盐(约6 g / L)可以通过基因工程大肠杆菌被激活为乙酰辅酶A(乙酰辅酶A),并用作多种增值化学品(例如正丁醇,聚羟基丁酸酯)的基础(PHB)聚合物和三种不同的类异戊二烯天然产物。因此,将生物相容性固态纳米器件与生物系统连接为开发完全由阳光驱动的化学合成可编程系统提供了一个起点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号