...
首页> 外文期刊>data science and engineering >A Novel Link Prediction Framework Based on Gravitational Field
【24h】

A Novel Link Prediction Framework Based on Gravitational Field

机译:

获取原文
获取原文并翻译 | 示例

摘要

Currently, most researchers only utilize the network information or node characteristics to calculate the connection probability between unconnected node pairs. Therefore, we attempt to project the problem of connection probability between unconnected pairs into the physical space calculating it. Firstly, the definition of gravitation is introduced in this paper, and the concept of gravitation is used to measure the strength of the relationship between nodes in complex networks. It is generally known that the gravitational value is related to the mass of objects and the distance between objects. In complex networks, the interrelationship between nodes is related to the characteristics, degree, betweenness, and importance of the nodes themselves, as well as the distance between nodes, which is very similar to the gravitational relationship between objects. Therefore, the importance of nodes is used to measure the mass property in the universal gravitational equation and the similarity between nodes is used to measure the distance property in the universal gravitational equation, and then a complex network model is constructed from physical space. Secondly, the direct and indirect gravitational values between nodes are considered, and a novel link prediction framework based on the gravitational field, abbreviated as LPFGF, is proposed, as well as the node similarity framework equation. Then, the framework is extended to various link prediction algorithms such as Common Neighbors (CN), Adamic-Adar (AA), Preferential Attachment (PA), and Local Random Walk (LRW), resulting in the proposed link prediction algorithms LPFGF-CN, LPFGF-AA, LPFGF-PA, LPFGF-LRW, and so on. Finally, four real datasets are used to compare prediction performance, and the results demonstrate that the proposed algorithmic framework can successfully improve the prediction performance of other link prediction algorithms, with a maximum improvement of 15.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号