首页> 外文期刊>Mutation Research: International Journal on Mutagenesis, Chromosome Breakage and Related Subjects >Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue.
【24h】

Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue.

机译:脉冲,空间分级的显微同步加速器X射线束对正常和肿瘤脑组织的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Microbeam radiation therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600keV, produced by third generation synchrotron sources, such as the European Synchrotron Radiation Facility (ESRF), in France. The main advantages of highly brilliant synchrotron sources are an extremely high dose rate and very small beam divergence. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. The minimal beam divergence results in the advantage of steeper dose gradients delivered to a tumor target, thus achieving a higher dose deposition in the target volume in fractions of seconds, with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has yielded many results from preclinical trials based on different animal models, including mice, rats, piglets and rabbits. Typically, MRT uses arrays of narrow ( approximately 25-100 microm wide) microplanar beams separated by wider (100-400 microm centre-to-centre) microplanar spaces. The height of these microbeams typically varies from 1 to 100 mm, depending on the target and the desired preselected field size to be irradiated. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues, up to approximately 2 yr after irradiation, and at the same time show a preferential damage of malignant tumor tissues; these effects of MRT have now been extensively studied over nearly two decades. More recently, some biological in vivo effects of synchrotron X-ray beams in the millimeter range (0.68-0.95 mm, centre-to-centre distances 1.2-4 mm), which may differ to some extent from those of microscopic beams, have been followed up to approximately 7 months after irradiation. Comparisons between broad-beam irradiation and MRT indicate a higher tumor control for the same sparing of normal tissue in the latter, even if a substantial fraction of tumor cells are not receiving a radiotoxic level of radiation. The hypothesis of a selective radiovulnerability of the tumor vasculature versus normal blood vessels by MRT, and of the cellular and molecular mechanisms involved remains under investigation. The paper highlights the history of MRT including salient biological findings after microbeam irradiation with emphasis on the vascular components and the tolerance of the central nervous system. Details on experimental and theoretical dosimetry of microbeams, core issues and possible therapeutic applications of MRT are presented.
机译:微束放射疗法(MRT)使用高度准直,准平行的50-600keV X射线微束阵列,该阵列由法国的欧洲同步加速器辐射设施(ESRF)等第三代同步加速器源产生。高度明亮的同步加速器源的主要优点是极高的剂量率和非常小的束发散度。高剂量率对于以微观体积递送治疗剂量是必需的,以避免微束由于组织的心脏同步运动而扩散。最小的光束发散度具有传递到肿瘤靶标的更陡峭的剂量梯度的优势,从而在几分之几秒内在靶标体积中实现了更高的剂量沉积,并且半影的范围比传统放射疗法更清晰。在过去20年中,MRT研究已经从基于不同动物模型(包括小鼠,大鼠,仔猪和兔子)的临床前试验中获得了许多结果。通常,MRT使用窄的(大约25-100微米宽)微平面光束阵列,这些光束由较宽的(100-400微米中心到中心)微平面空间隔开。这些微束的高度通常在1到100毫米之间变化,具体取决于目标和要照射的所需预选场大小。正常组织令人惊讶地很好地耐受了数百Gy的峰值入射剂量,在照射后长达约2年,并且同时显示出对恶性肿瘤组织的优先损害。在过去的二十多年中,人们对MRT的这些作用进行了广泛的研究。最近,在毫米范围内(0.68-0.95 mm,中心到中心的距离为1.2-4 mm),同步加速器X射线束的某些生物体内效应已经出现,在某种程度上可能不同于显微束。随访至照射后约7个月。宽束照射与MRT的比较表明,即使后者中的相当一部分正常细胞未接受放射毒性水平的辐射,对于后者中的正常组织的相同保留,其肿瘤控制也更高。 MRT对肿瘤血管相对于正常血管的选择性放射性脆弱性以及所涉及的细胞和分子机制的假设仍在研究中。该论文重点介绍了MRT的历史,包括微束照射后的重要生物学发现,重点是血管成分和中枢神经系统的耐受性。介绍了有关微束的实验和理论剂量,核心问题以及MRT可能的治疗应用的详细信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号