首页> 外文期刊>Mutation Research: International Journal on Mutagenesis, Chromosome Breakage and Related Subjects >Use of near infrared femtosecond lasers as sub-micron radiation microbeam for cell DNA damage and repair studies.
【24h】

Use of near infrared femtosecond lasers as sub-micron radiation microbeam for cell DNA damage and repair studies.

机译:将近红外飞秒激光器用作亚微米辐射微束,用于细胞DNA损伤和修复研究。

获取原文
获取原文并翻译 | 示例
       

摘要

Laser induced radiation microbeam technology for radiobiology research is undergoing rapid growth because of the increased availability and ease of use of femtosecond laser sources. The main processes involved are multiphoton absorption and/or plasma formation. The high peak powers these lasers generate make them ideal tools for depositing sub-micrometer size radiant energy within a region of a living cell nucleus to activate ionising and/or photochemically driven processes. The technique allows questions relating to the effects of low doses of radiation, the propagation and treatment of deoxyribonucleic acid (DNA) damage and repair in individual live cells as well as non-targeted cell to cell effects to be addressed. This mini-review focuses on the use of near infrared (NIR) ca. 800nm radiation to induce damage that is radically different from the early and subsequent ultraviolet microbeam techniques. Ultrafast pulsed NIR instrumentation has many benefits including the ability to eliminate issues of unspecific UV absorption by the many materials prevalent within cells. The multiphoton interaction volume also permits energy deposition beyond the diffraction limit. Work has established that the fundamental process of the damage induced by the ultrashort laser pulses is different to those induced from continuous wave light sources. Pioneering work has demonstrated that NIR laser microbeam radiation can mimic ionising radiation via multiphoton absorption within the 3D femtolitre volume of the highly focused Gaussian beam. This light-matter interaction phenomenon provides a novel optical microbeam probe for mimicking both complex ionising and UV radiation-type cell damage including double strand breaks (DSBs) and base damage. A further advantage of the pulsed laser technique is that it provides further scope for time-resolved experiments. Recently the NIR laser microbeam technique has been used to investigate the recruitment of repair proteins to the sub-micrometre size area of damage in viable cells using both immuno-fluorescent staining of gamma-H2AX (a marker for DSBs) and real-time imaging of GFP-labelled repair proteins including ATM, p53 binding protein 1 (53BP1), RAD51 and Ku 70/80 to elucidate the interaction of the two DNA DSB repair pathways, homologous recombination and the non-homologous end joining pathway.
机译:由于飞秒激光源的可用性提高和易于使用,用于放射生物学研究的激光诱导辐射微束技术正在迅速发展。涉及的主要过程是多光子吸收和/或等离子体形成。这些激光器产生的高峰值功率使其成为在活细胞核区域内沉积亚微米级辐射能以激活电离和/或光化学驱动过程的理想工具。该技术提出了与低剂量辐射,脱氧核糖核酸(DNA)损伤的传播和治疗以及单个活细胞以及非靶向细胞对细胞效应的修复有关的问题。本微型审阅侧重于使用近红外(NIR)ca。 800nm辐射引起的损伤与早期和后续的紫外线微束技术完全不同。超快脉冲NIR仪器具有许多优点,包括能够消除细胞中普遍存在的许多材料引起的非特异性UV吸收问题。多光子相互作用体积还允许能量沉积超过衍射极限。工作已经确定,超短激光脉冲引起的损伤的基本过程与连续波光源引起的损伤的过程不同。开拓性工作已经证明,NIR激光微束辐射可以在高度聚焦的高斯光束的3D飞度容积内通过多光子吸收来模拟电离辐射。这种光-物质相互作用现象提供了一种新型的光学微束探针,可同时模拟复杂的电离和UV辐射型细胞损伤,包括双链断裂(DSB)和碱基损伤。脉冲激光技术的另一个优点是,它为时间分辨实验提供了更大的范围。近来,近红外激光微束技术已被用于通过γ-H2AX(DSBs的标记)的免疫荧光染色和实时成像技术研究修复蛋白募集到活细胞中亚微米大小的损伤区域。 GFP标记的修复蛋白包括ATM,p53结合蛋白1(53BP1),RAD51和Ku 70/80,以阐明两个DNA DSB修复途径,同源重组和非同源末端连接途径之间的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号