...
【24h】

DNA base damage recognition and removal: new twists and grooves.

机译:DNA碱基损伤的识别和消除:新的曲折和凹槽。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The discoveries of nucleotide excision repair and transcription-coupled repair led by Phil Hanawalt and a few colleagues sparked a dramatic evolution in our understanding of DNA and molecular biology by revealing the intriguing systems of DNA repair essential to life. In fact, modifications of the cut-and-patch principles identified by Phil Hanawalt and colleagues underlie many of the common themes for the recognition and removal of damaged DNA bases outlined in this review. The emergence of these common themes and a unified understanding have been greatly aided from the direct visualizations of repair proteins and their interactions with damaged DNA by structural biology. These visualizations of DNA repair structures have complemented the increasing wealth of biochemical and genetic information on DNA base damage responses by revealing general themes for the recognition of damaged bases, such as sequence-independent DNA recognition motifs, minor groove reading heads for initial damage recognition, andnucleotide flipping from the major groove into active-site pockets for high specificity of base damage recognition and removal. We know that repair intermediates are as harmful as the initial damage itself, and that these intermediates are protected from one repair step to the next by the enzymes involved, such that pathway-specific handoffs must be efficiently coordinated. Here we focus on the structural biology of the repair enzymes and proteins that recognize specific base lesions and either initiate the base excision repair pathway or directly repair the damage in one step. This understanding of the molecular basis for DNA base integrity is fundamental to resolving key scientific, medical, and public health issues, including the evaluation of the risks from inherited repair protein mutations, environmental toxins, and medical procedures.
机译:由菲尔·哈纳瓦特(Phil Hanawalt)和其他几位同事领导的核苷酸切除修复和转录偶联修复的发现,揭示了生命必不可少的令人着迷的DNA修复系统,从而引发了我们对DNA和分子生物学的深刻理解。实际上,Phil Hanawalt及其同事确定的“剪切和修补”原理的修改是本文概述的识别和去除受损DNA碱基的许多常见主题的基础。这些常见主题的出现和统一的理解,大大得益于修复蛋白的直接可视化及其通过结构生物学与受损DNA的相互作用。这些DNA修复结构的可视化通过揭示识别受损碱基的一般主题(例如不依赖序列的DNA识别基序,用于初始损伤识别的小凹槽读码头),补充了有关DNA碱基损伤反应的越来越多的生化和遗传信息。核苷酸从主要凹槽翻转到活性位点口袋中,可高度特异性地识别和清除碱基损伤。我们知道,修复中间体与最初的损害本身一样有害,并且这些中间体受到所涉及的酶的保护,不会从一个修复步骤转移到下一个修复步骤,因此必须有效地协调特定途径的交接。在这里,我们专注于识别特定碱基损伤并启动碱基切除修复途径或直接修复损伤的修复酶和蛋白质的结构生物学。对DNA碱基完整性的分子基础的这种理解是解决关键的科学,医学和公共卫生问题的基础,包括评估遗传修复蛋白突变,环境毒素和医疗程序带来的风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号