首页> 外文期刊>Molecular physics >A theoretical investigation of the atmospherically important reaction between chlorine atoms and formic acid: determination of the reaction mechanism and calculation of the rate coefficient at different temperatures
【24h】

A theoretical investigation of the atmospherically important reaction between chlorine atoms and formic acid: determination of the reaction mechanism and calculation of the rate coefficient at different temperatures

机译:氯原子与甲酸在大气中重要反应的理论研究:确定反应机理和计算不同温度下的速率系数

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The Cl + HCOOH reaction is important in the atmosphere, as the chlorine (Cl) atom is an important oxidant, especially in the marine boundary layer, and formic acid (HCOOH) is one of the most abundant organic acids in the troposphere. The reaction surfaces of the two H abstraction channels were computed by second-order unrestricted Moller-Plesset perturbation theory (UMP2) and density functional theory (DFT) calculations. Relative electronic energies were improved to the RCCSD(T)/CBS and UCCSD(T)-F12/CBS levels. The barrier of the C-H hydrogen abstraction channel was found to be lower by about 10 kcal mol(-1). Rate coefficients (k) of this channel were calculated at different temperatures at various variational transition state theory (VTST) levels including tunnelling. For single-level direct dynamics VTST calculations, the computed k (2.5 x 10(-13) cm(3) molecule(-1) s(-1)) using the BMK (Boese and Martin meta hybrid) functional at the highest level (ICVT/SCT) agrees the best with experimental values at 298 K (1.8 and 2.0 x 10(-13) cm(3) molecule(-1) s(-1)). For dual-level direct dynamics calculations (RCCSD(T)/CBS//MP2 MEP), an adjusted barrier height of 3.1 kcal mol(-1) is required to match the ICVT/SCT k with the experimental values. The computed rate coefficients of the Cl + HCOOH reaction is reported for the first time with a temperature range of 200-1500 K. The implications of the results obtained to atmospheric chemistry are discussed.
机译:Cl + HCOOH反应在大气中很重要,因为氯(Cl)原子是重要的氧化剂,尤其是在海洋边界层中,而甲酸(HCOOH)是对流层中最丰富的有机酸之一。通过二阶无限制Moller-Plesset微扰理论(UMP2)和密度泛函理论(DFT)计算,计算了两个H抽象通道的反应面。相对电子能量提高到RCCSD(T)/ CBS和UCCSD(T)-F12 / CBS水平。发现C-H氢提取通道的势垒降低了约10 kcal mol(-1)。该通道的速率系数(k)是在包括隧道效应在内的各种变迁过渡状态理论(VTST)级别下,在不同温度下计算得出的。对于单级直接动力学VTST计算,使用最高级别的BMK(Boese and Martin meta hybrid)函数计算的k(2.5 x 10(-13)cm(3)分子(-1)s(-1)) (ICVT / SCT)与298 K(1.8和2.0 x 10(-13)cm(3)Molecular(-1)s(-1)的实验值)最吻合。对于双层直接动力学计算(RCCSD(T)/ CBS // MP2 MEP),需要调整后的势垒高度为3.1 kcal mol(-1)才能使ICVT / SCT k与实验值匹配。首次报道了在200-1500 K的温度范围内计算出的Cl + HCOOH反应的速率系数。讨论了所得结果对大气化学的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号