...
首页> 外文期刊>Molecular pharmaceutics >Electrospun Polymer Blend Nanofibers for Tunable Drug Delivery: The Role of Transformative Phase Separation on Controlling the Release Rate
【24h】

Electrospun Polymer Blend Nanofibers for Tunable Drug Delivery: The Role of Transformative Phase Separation on Controlling the Release Rate

机译:用于可调节药物递送的电纺聚合物共混纳米纤维:转化相分离在控制释放速率中的作用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Electrospun fibrous materials have a wide range of biomedical applications, many of them involving the use of polymers as matrices for incorporation of therapeutic agents. The use of polymer blends improves the tuneability of the physicochemical and mechanical properties of the drug loaded fibers. This also benefits the development of controlled drug release formulations, for which the release rate can be modified by altering the ratio of the polymers in the blend. However, to realize these benefits, a clear understanding of the phase behavior of the processed polymer blend is essential. This study reports an in depth investigation of the impact of the electrospinning process on the phase separation of a model partially miscible polymer blend, PVP K90 and HPMCAS, in comparison to other conventional solvent evaporation based processes including film casting and spin coating. The nanoscale stretching and ultrafast solvent removal of electrospinning lead to an enhanced apparent miscibility between the polymers, with the same blends showing micronscale phase separation when processed using film casting and spin coating. Nanoscale phase separation in electrospun blend fibers was confirmed in the dry state. Rapid, layered, macroscale phase separation of the two polymers occurred during the wetting of the fibers. This led to a biphasic drug release profile from the fibers, with a burst release from PVP-rich phases and a slower, more continuous release from HPMCAS-rich phases. It was noted that the model drug, paracetamol, had more favorable partitioning into the PVP-rich phase, which is likely to be a result of greater hydrogen bonding between PVP and paracetamol. This led to higher drug contents in the PVP-rich phases than the HPMCAS-rich phases. By alternating the proportions of the PVP and HPMCAS, the drug release rate can be modulated.
机译:电纺纤维材料具有广泛的生物医学应用,其中许多涉及使用聚合物作为掺入治疗剂的基质。聚合物共混物的使用改善了载药纤维的物理化学和机械性能的可调谐性。这也有利于控制药物释放制剂的开发,其释放速率可以通过改变共混物中聚合物的比例来改变。但是,要实现这些好处,必须清楚地了解加工过的聚合物共混物的相态。这项研究报告了与其他传统的基于溶剂蒸发的工艺(包括薄膜浇铸和旋涂)相比,静电纺丝工艺对模型部分可混溶的聚合物共混物PVP K90和HPMCAS相分离的影响的深入研究。静电纺丝的纳米级拉伸和超快去除溶剂可提高聚合物之间的表观混溶性,当使用薄膜浇铸和旋涂工艺处理时,相同的共混物显示出微米级相分离。在干燥状态下确认了电纺混纺纤维中的纳米级相分离。在纤维润湿期间,两种聚合物发生了快速,分层的宏观相分离。这导致了纤维的两相药物释放曲线,从富含PVP的相突然释放,并且从富含HPMCAS的相中缓慢而连续地释放。注意到模型药物扑热息痛具有更有利的分配到富含PVP的相中,这很可能是PVP和扑热息痛之间氢键更大的结果。这导致富PVP阶段的药物含量高于富HPMCAS的阶段。通过交替使用PVP和HPMCAS的比例,可以调节药物释放速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号