首页> 外文期刊>Molecular ecology >The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils
【24h】

The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils

机译:活跃的微生物多样性驱动生态系统的多功能性,并在生理上与地中海半干旱土壤中的碳利用率相关

获取原文
获取原文并翻译 | 示例
       

摘要

Biogeochemical processes and ecosystemic functions are mostly driven by soil microbial communities. However, most methods focus on evaluating the total microbial community and fail to discriminate its active fraction which is linked to soil functionality. Precisely, the activity of the microbial community is strongly limited by the availability of organic carbon (C) in soils under arid and semi-arid climate. Here, we provide a complementary genomic and metaproteomic approach to investigate the relationships between the diversity of the total community, the active diversity and ecosystem functionality across a dissolved organic carbon (DOC) gradient in southeast Spain. DOC correlated with the ecosystem multifunctionality index composed by soil respiration, enzyme activities (urease, alkaline phosphatase and b-glucosidase) and microbial biomass (phospholipid fatty acids, PLFA). This study highlights that the active diversity (determined by metaprotoemics) but not the diversity of the whole microbial community (evaluated by amplicon gene sequencing) is related to the availability of organic C and it is also connected to the ecosystem multifunctionality index. We reveal that DOC shapes the activities of bacterial and fungal populations in Mediterranean semi-arid soils and determines the compartmentalization of functional niches. For instance, Rhizobales thrived at high-DOC sites probably fuelled by metabolism of one-C compounds. Moreover, the analysis of proteins involved in the transport and metabolism of carbohydrates revealed that Ascomycota and Basidiomycota occupied different nutritional niches. The functional mechanisms for niche specialization were not constant across the DOC gradient.
机译:生物地球化学过程和生态系统功能主要由土壤微生物群落驱动。但是,大多数方法集中于评估总微生物群落,而无法区分其与土壤功能相关的活性成分。确切地说,在干旱和半干旱气候下,土壤中有机碳的可用性严重限制了微生物群落的活动。在这里,我们提供了一种互补的基因组学和元蛋白质组学方法,以研究西班牙东南部整个社区的溶解度,活性溶解度和整个生态系统功能与溶解有机碳(DOC)梯度之间的关系。 DOC与由土壤呼吸,酶活性(脲酶,碱性磷酸酶和b-葡萄糖苷酶)和微生物生物量(磷脂脂肪酸,PLFA)组成的生态系统多功能指数相关。这项研究强调,活性多样性(由元组学决定),而不是整个微生物群落的多样性(由扩增子基因测序评估)与有机碳的有效性有关,并且还与生态系统多功能指数相关。我们揭示了DOC塑造了地中海半干旱土壤中细菌和真菌种群的活动,并确定了功能生态位的区室化。例如,根瘤菌在高DOC位点繁衍,可能是由一碳化合物的代谢推动的。此外,对参与碳水化合物运输和代谢的蛋白质的分析表明,子囊菌和担子菌占据了不同的营养生态位。生态位专业化的功能机制在DOC梯度上并不恒定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号