...
首页> 外文期刊>Molecular biology reports >Identification and characterization of selenate- and selenite-responsive genes in a Se-hyperaccumulator Astragalus racemosus
【24h】

Identification and characterization of selenate- and selenite-responsive genes in a Se-hyperaccumulator Astragalus racemosus

机译:硒超富集黄芪中硒酸盐和亚硒酸盐响应基因的鉴定和表征

获取原文
获取原文并翻译 | 示例

摘要

Plants with capacity to accumulate high levels of selenium (Se) are desired for phytoremediation and biofortification. Plants of genus Astragalus accumulate and tolerate high levels of Se, but their slow growth, low biomass and non-edible properties limit their direct utilization. Genetic engineering may be an alternative way to produce edible or high biomass Se-accumulating plants. The first step towards this goal is to isolate genes that are responsible for Se accumulation and tolerance. Later, these genes can be introduced into other edible and high biomass plants. In the present study, we applied fluorescent differential display to analyze the transcript profile of Se-hyperaccumulator A. racemosus treated with 20 mu M selenate (K2SeO4) for 2 weeks. Among 125 identified Se-responsive candidate genes, the expression levels of nine were induced or suppressed more than twofold by selenate treatment in two independent experiments while 14 showed such changes when treated with selenite (K2SeO3). Six of them were found to respond to both selenate and selenite treatments. A novel gene CEJ367 was found to be highly induced by both selenate (1,920-fold) and selenite (579-fold). Root- or shoot-preferential expression of nine genes was further investigated. These identified genes may allow us to create Se-enriched transgenic plants.
机译:需要具有高水平硒(Se)积累能力的植物进行植物修复和生物强化。黄芪属植物积累并耐受高水平的硒,但其生长缓慢,生物量低和不可食用的特性限制了其直接利用。基因工程可能是生产食用或高生物量富硒植物的替代方法。朝这个目标迈出的第一步是分离负责Se积累和耐受的基因。后来,这些基因可以引入其他可食用和高生物量植物中。在本研究中,我们应用荧光差异显示技术分析了用20μM硒酸(K2SeO4)处理2周的Se-超蓄积曲霉的转录谱。在两个独立的实验中,通过硒酸盐处理在125个已鉴定出的硒反应性候选基因中,有9种的表达水平被硒酸盐诱导或抑制了两倍以上,而当用亚硒酸盐(K2SeO3)处理时有14种显示出这种变化。发现其中六个对硒酸盐和亚硒酸盐治疗均反应。发现一个新的基因CEJ367被硒酸盐(1,920倍)和亚硒酸盐(579倍)都高度诱导。进一步研究了9个基因的根优先表达或芽优先表达。这些鉴定出的基因可能使我们能够创建富硒的转基因植物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号