首页> 外文期刊>Molecular biology of the cell >Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics
【24h】

Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics

机译:酵母运动因子不能稳定依赖Stu2p的纺锤体微管动力学。

获取原文
获取原文并翻译 | 示例
       

摘要

The interaction of kinetochores with dynamic microtubules during mitosis is essential for proper centromere motility, congression to the metaphase plate, and subsequent anaphase chromosome segregation. Budding yeast has been critical in the discovery of proteins necessary for this interaction. However, the molecular mechanism for microtubule-kinetochore interactions remains poorly understood. Using live cell imaging and mutations affecting microtubule binding proteins and kinetochore function, we identify a regulatory mechanism for spindle microtubule dynamics involving Stu2p and the core kinetochore component, Ndc10p. Depleting cells of the microtubule binding protein Stu2p reduces kinetochore microtubule dynamics. Centromeres remain under tension but lack motility. Thus, normal microtubule dynamics are not required to maintain tension at the centromere. Loss of the kinetochore (ndc10-1, ndc10-2, and ctf13-30) does not drastically affect spindle microtubule turnover, indicating that Stu2p, not the kinetochore, is the foremost governor of microtubule dynamics. Disruption of kinetochore function with ndc10-1 does not affect the decrease in microtubule turnover in stu2 mutants, suggesting that the kinetochore is not required for microtubule stabilization. Remarkably, a partial kinetochore defect (ndc10-2) suppresses the decreased spindle microtubule turnover in the absence of Stu2p. These results indicate that Stu2p and Ndc10p differentially function in controlling kinetochore microtubule dynamics necessary for centromere movements. [References: 62]
机译:在有丝分裂过程中,动植物与动态微管的相互作用对于适当的着丝粒运动,过渡到中期板以及随后的后期染色体分离至关重要。发芽酵母对于发现这种相互作用所必需的蛋白质至关重要。但是,微管-线粒体相互作用的分子机制仍然知之甚少。使用活细胞成像和影响微管结合蛋白和动粒功能的突变,我们确定涉及Stu2p和核心动粒成分Ndc10p的纺锤体微管动力学的调节机制。耗尽微管结合蛋白Stu2p的细胞会降低动线粒体微管动力学。着丝粒保持张力,但缺乏运动性。因此,不需要正常的微管动力学来维持着丝粒的张力。动粒的丢失(ndc10-1,ndc10-2和ctf13-30)不会显着影响纺锤体微管的周转率,这表明Stu2p(而不是动粒)是微管动力学的首要调控因素。 ndc10-1破坏线粒体功能不会影响stu2突变体中微管转换的减少,这表明微管稳定并不需要线粒体。值得注意的是,在不存在Stu2p的情况下,部分动粒缺陷(ndc10-2)抑制了纺锤体微管周转的减少。这些结果表明,Stu2p和Ndc10p在控制着丝粒运动所必需的动粒微管动力学中具有差异作用。 [参考:62]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号