...
首页> 外文期刊>Measurement Science & Technology >Frequentist coverage properties of uncertainty intervals for weak Poisson signals in the presence of background
【24h】

Frequentist coverage properties of uncertainty intervals for weak Poisson signals in the presence of background

机译:背景下弱泊松信号不确定区间的频域覆盖特性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We construct uncertainty intervals for weak Poisson signals in the presence of background. We consider the case where a primary experiment yields a realization of the signal plus background, and a second experiment yields a realization of the background. The data acquisition times, for the background-only experiment, T_(bg), and the primary experiment, T, are selected so that their ratio, T_(bg)/T, varies from 1 to 25. The upper choice of 25 is motivated by an experimental study at the National Institute of Standards and Technology (NIST). The expected number of background counts in the primary experiment varies from 0.2 to 2. We construct 90percent and 95percent confidence intervals based on a propagation-of-errors method as well as two implementations of a Neyman procedure where acceptance regions are constructed based on a likelihood-ratio criterion that automatically determines whether the resulting confidence interval is one-sided or two-sided. In one of the implementations of the Neyman procedure due to Feldman and Cousins (FC), uncertainty in the expected background contribution is neglected. In the other implementation, we account for random uncertainty in the estimated expected background with a parametric bootstrap implementation of a method due to Conrad. We also construct minimum length Bayesian credibility intervals. For each method, we test for the presence of a signal based on the value of the lower endpoint of the uncertainty interval. In general, the propagation-of-errors method performs the worst compared to the other methods according to frequentist coverage and detection probability criteria, and sometimes produces nonsensical intervals where both endpoints are negative. The Neyman procedures generally yield intervals with better frequentist coverage properties compared to the Bayesian method except for some cases where T_(bg)/T velence 1. In general, the Bayesian method yields intervals with lower detection probabilities compared to Neyman procedures. One of the main conclusions is that when T_(bg)/T is 5 or more and the expected background is 2 or less, the FC method outperforms the other methods considered. For T_(bg)/T velence 1, 2 we observe that the Neyman procedure methods yield false detection probabilities for the case of no signal that are higher than expected given the nominal frequentist coverage of the interval. In contrast, for T_(bg)/T velence 1, 2, the false detection probability of the Bayesian method is less than expected according to the nominal frequentist coverage.
机译:我们在存在背景的情况下构造弱Poisson信号的不确定区间。我们考虑的情况是,一次实验产生信号加背景,而第二次实验产生背景。选择仅背景实验T_(bg)和主要实验T的数据采集时间,以使它们的比率T_(bg)/ T在1到25之间变化。上限25是受美国国家标准技术研究院(NIST)的实验研究启发。一次实验中预期的背景计数数量从0.2到2不等。我们基于误差传播方法以及内曼程序的两种实现方式构造了90%和95%的置信区间,其中尼曼程序基于似然性构造了接受区域-比率标准,该标准自动确定结果置信区间是单边还是两边。在由于Feldman和Cousins(FC)实施的Neyman程序的一种实现中,忽略了预期背景贡献的不确定性。在另一种实现中,我们使用Conrad的方法的参数自举实现来解决估计的预期背景中的随机不确定性。我们还构造了最小长度的贝叶斯可信区间。对于每种方法,我们都基于不确定性区间下限端点的值测试信号的存在。通常,根据常客覆盖率和检测概率标准,错误传播方法与其他方法相比,执行效果最差,有时会产生两个端点均为负值的无意义的区间。除T_(bg)/ T velence 1的某些情况外,与贝叶斯方法相比,Neyman过程通常产生具有更好的频域覆盖特性的间隔。通常,与Neyman过程相比,贝叶斯方法产生的检测概率较低。主要结论之一是,当T_(bg)/ T为5或更高且预期背景为2或更低时,FC方法优于其他方法。对于T_(bg)/ T速度1、2,我们观察到,在没有信号的情况下,给定间隔的名义上的频率覆盖范围,没有信号的情况下,Neyman程序方法会产生错误的检测概率。相反,对于T_(bg)/ T速度1、2,根据名义上的常客覆盖率,贝叶斯方法的错误检测概率小于预期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号