...
首页> 外文期刊>Measurement Science & Technology >Taylor-series and Monte-Carlo-method uncertainty estimation of the width of a probability distribution based on varying bias and random error
【24h】

Taylor-series and Monte-Carlo-method uncertainty estimation of the width of a probability distribution based on varying bias and random error

机译:基于变化偏差和随机误差的概率分布宽度的泰勒级数和蒙特卡洛方法不确定性估计

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Uncertainties are typically assumed to be constant or a linear function of the measured value; however, this is generally not true. Particle image velocimetry (PIV) is one example of a measurement technique that has highly nonlinear, time varying local uncertainties. Traditional uncertainty methods are not adequate for the estimation of the uncertainty of measurement statistics (mean and variance) in the presence of nonlinear, time varying errors. Propagation of instantaneous uncertainty estimates into measured statistics is performed allowing accurate uncertainty quantification of time-mean and statistics of measurements such as PIV. It is shown that random errors will always elevate the measured variance, and thus turbulent statistics such as u'u'. Within this paper, nonlinear, time varying errors are propagated from instantaneous measurements into the measured mean and variance using the Taylor-series method. With these results and knowledge of the systematic and random uncertainty of each measurement, the uncertainty of the time-mean, the variance and covariance can be found. Applicability of the Taylor-series uncertainty equations to time varying systematic and random errors and asymmetric error distributions are demonstrated with Monte-Carlo simulations. The Taylor-series uncertainty estimates are always accurate for uncertainties on the mean quantity. The Taylor-series variance uncertainty is similar to the Monte-Carlo results for cases in which asymmetric random errors exist or the magnitude of the instantaneous variations in the random and systematic errors is near the 'true' variance. However, the Taylor-series method overpredicts the uncertainty in the variance as the instantaneous variations of systematic errors are large or are on the same order of magnitude as the 'true' variance.
机译:通常将不确定性假定为常数或测量值的线性函数。但是,这通常是不正确的。粒子图像测速(PIV)是一种具有高度非线性,时变局部不确定性的测量技术。在存在非线性,时变误差的情况下,传统的不确定性方法不足以估计测量统计量(均值和方差)的不确定性。将瞬时不确定性估计值传播到测量的统计数据中,从而可以对时间平均值和测量数据(例如PIV)进行准确的不确定性量化。结果表明,随机误差将始终提高测得的方差,从而扰动统计数据,例如u'u'。在本文中,使用泰勒级数法将非线性时变误差从瞬时测量值传播到测量的平均值和方差中。通过这些结果以及对每次测量的系统和随机不确定性的了解,可以找到时间平均值,方差和协方差的不确定性。蒙特卡洛模拟证明了泰勒级数不确定性方程对时变系统误差和随机误差以及不对称误差分布的适用性。对于平均数量的不确定性,泰勒级数不确定性估计总是准确的。对于存在非对称随机误差或随机误差和系统误差的瞬时变化幅度接近“真实”方差的情况,泰勒级数方差不确定性与蒙特卡洛结果相似。但是,泰勒级数法过高地预测了方差的不确定性,因为系统误差的瞬时方差很大,或者与“真实”方差处于相同的数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号