...
首页> 外文期刊>Journal of Applied Physics >High performance multilayer heterogeneous resonators based on 128° YX lithium niobate and diamond composite films for 5 GHz and beyond
【24h】

High performance multilayer heterogeneous resonators based on 128° YX lithium niobate and diamond composite films for 5 GHz and beyond

机译:

获取原文
获取原文并翻译 | 示例

摘要

The advent of the new 5G communication standard has introduced demanding requirements for the performance of RF front-end filters, necessitating high frequency, large bandwidth, and other improved parameters. Consequently, researchers have been actively investigating the potential of surface acoustic wave resonators and film bulk acoustic resonators to address these needs, leading to the development of numerous novel structures. Through finite element simulation, a new heterogeneous stack structure Al/LN/diamond/Si with an interdigitated electrode resonant cavity is proposed. And the advantageous role of a diamond thin film in the surface acoustic wave resonant structure, including the excitation of high-frequency acoustic resonance modes and modulation of the electromechanical coupling coefficient has been studied. This structure holds promise for addressing the increasing demands for high-frequency, large-bandwidth RF front-end filters in the context of the new 5G communication standard. The results show that the central resonant frequency of the new structure resonator is 5284 MHz, the electromechanical coupling coefficient is 10.96, and the Q factor value is 10 316, which has potential application value in the field of high-frequency filtering.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号