...
首页> 外文期刊>Measurement Science & Technology >Magnetic induction spectroscopy: non-contact measurement of the electrical conductivity spectra of biological samples
【24h】

Magnetic induction spectroscopy: non-contact measurement of the electrical conductivity spectra of biological samples

机译:磁感应光谱法:非接触式测量生物样品的电导率光谱

获取原文
获取原文并翻译 | 示例
           

摘要

Measurement of the electrical conductivity of biological tissues as a function of frequency, often termed 'bioelectrical impedance spectroscopy (BIS)', provides valuable information on tissue structure and composition. In implementing BIS though, there can be significant practical difficulties arising from the electrode-sample interface which have likely limited its deployment in industrial applications. In magnetic induction spectroscopy (MIS) these difficulties are eliminated through the use of fully non-contacting inductive coupling between the sensors and sample. However, inductive coupling introduces its own set of technical difficulties, primarily related to the small magnitudes of the induced currents and their proportionality with frequency. This paper describes the design of a practical MIS system incorporating new, highly-phase-stable electronics and compares its performance with that of electrode-based BIS in measurements on biological samples including yeast suspensions in saline (concentration 50-400 g l~(-1)) and solid samples of potato, cucumber, tomato, banana and porcine liver. The shapes of the MIS spectra were in good agreement with those for electrode-based BIS, with a residual maximum discrepancy of 28percent. The measurement precision of the MIS was 0.05 S m~(-1) at 200 kHz, improving to 0.01 S m~(-1) at a frequency of 20 MHz, for a sample volume of 80 ml. The data-acquisition time for each MIS measurement was 52 s. Given the value of spectroscopic conductivity information and the many advantages of obtaining these data in a non-contacting manner, even through electrically-insulating packaging materials if necessary, it is concluded that MIS is a technique with considerable potential for monitoring bio-industrial processes and product quality.
机译:生物组织电导率随频率变化的测量通常称为“生物电阻抗光谱法(BIS)”,可提供有关组织结构和成分的有价值的信息。但是,在实施BIS时,电极-样品界面可能会带来很大的实际困难,这可能会限制其在工业应用中的部署。在磁感应光谱(MIS)中,通过在传感器和样品之间使用完全非接触式感应耦合消除了这些困难。然而,感应耦合引入了它自己的一系列技术难题,这主要与感应电流的小幅度及其与频率的比例有关。本文介绍了一种实用的MIS系统的设计,该系统结合了新型的,高相稳定的电子器件,并将其与基于电极的BIS的性能进行了比较,以测量包括盐水中浓度为50-400 gl〜(-1)的酵母菌悬浮液在内的生物样品。 ))和马铃薯,黄瓜,西红柿,香蕉和猪肝的固体样品。 MIS光谱的形状与基于电极的BIS的形状非常吻合,残留最大差异为28%。 MIS的测量精度在200 kHz时为0.05 S m〜(-1),在80 MHz的样品量下,在20 MHz的频率下提高到0.01 S m〜(-1)。每次MIS测量的数据采集时间为52 s。考虑到光谱电导率信息的价值以及以非接触方式获得这些数据的许多优势,即使必要时也可以通过电绝缘包装材料,得出的结论是,MIS是一种具有巨大潜力的监测生物工业过程的技术,产品质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号