...
首页> 外文期刊>Measurement Science & Technology >Prediction of aeroacoustic sound using the flow field obtained by time-resolved particle image velocimetry
【24h】

Prediction of aeroacoustic sound using the flow field obtained by time-resolved particle image velocimetry

机译:使用时间分辨粒子图像测速仪获得的流场预测空气声

获取原文
获取原文并翻译 | 示例
           

摘要

Based on vortex theory, we experimentally and directly predict sound sources distributing in the flow field and determine the sound pressure level as a result of the spatial integration of sound sources. In employing this direct evaluation method for the aeroacoustic sound, the problem is that a large integration area is required to minimize errors caused by the sudden truncation of the integration area; we overcome it by adopting and applying a modified formula that neglects the quadrupole sound under the condition that the dipole sound is dominant at a low Mach number. Through the flow field measurement using a time-resolved particle image velocimetry (TR-PIV) technique, we will clearly demonstrate the feasibility of our method and the distribution of dipole sound sources in the vicinity of a body even if a comparatively small integration area must be taken. In this basic study, a circular cylinder with a diameter of 6.0 mm is used; the spatially integrated sound pressure is compared with the actual sound pressure which is measured with a microphone. Further, the sound sources evaluated using only the flow field are determined, which give us detailed information about the amplitude and phase of the sound source structure. This direct evaluation method for the dipole sound is applicable to a more complex body.
机译:基于涡旋理论,我们通过实验直接预测流场中的声源分布,并通过声源的空间整合确定声压级。在将这种直接评估方法用于航空声音时,问题在于需要较大的积分面积以最小化由于积分面积的突然截断而引起的误差。我们通过采用并应用修正的公式克服了这一点,该公式在偶极子声音在低马赫数下占主导地位的情况下忽略了四极子声音。通过使用时间分辨粒子图像测速技术(TR-PIV)进行的流场测量,我们将清楚地证明本方法的可行性以及偶极声源在人体附近的分布,即使必须相对较小的积分区域被采取。在此基础研究中,使用了直径为6.0毫米的圆柱体。将空间积分声压与使用麦克风测量的实际声压进行比较。此外,确定仅使用流场评估的声源,这为我们提供了有关声源结构的振幅和相位的详细信息。这种对偶极子声音的直接评估方法适用于更复杂的物体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号