...
首页> 外文期刊>Molecular biology and evolution >Fitness Trade-Offs Determine the Role of the Molecular Chaperonin GroEL in Buffering Mutations
【24h】

Fitness Trade-Offs Determine the Role of the Molecular Chaperonin GroEL in Buffering Mutations

机译:权衡取舍决定了分子伴侣蛋白GroEL在缓冲突变中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Molecular chaperones fold many proteins and their mutated versions in a cell and can sometimes buffer the phenotypic effect of mutations that affect protein folding. Unanswered questions about this buffering include the nature of its mechanism, its influence on the genetic variation of a population, the fitness trade-offs constraining this mechanism, and its role in expediting evolution. Answering these questions is fundamental to understand the contribution of buffering to increase genetic variation and ecological diversification. Here, we performed experimental evolution, genome resequencing, and computational analyses to determine the trade-offs and evolutionary trajectories of Escherichia coli expressing high levels of the essential chaperonin GroEL. GroEL is abundantly present in bacteria, particularly in bacteria with large loads of deleterious mutations, suggesting its role in mutational buffering. We show that groEL overexpression is costly to large populations evolving in the laboratory, leading to groE expression decline within 66 generations. In contrast, populations evolving under the strong genetic drift characteristic of endosymbiotic bacteria avoid extinction or can be rescued in the presence of abundant GroEL. Genomes resequenced from cells evolved under strong genetic drift exhibited significantly higher tolerance to deleterious mutations at high GroEL levels than at native levels, revealing that GroEL is buffering mutations in these cells. GroEL buffered mutations in a highly diverse set of proteins that interact with the environment, including substrate and ion membrane transporters, hinting at its role in ecological diversification. Our results reveal the fitness trade-offs of mutational buffering and how genetic variation is maintained in populations.
机译:分子伴侣在细胞中折叠许多蛋白质及其突变形式,有时可以缓冲影响蛋白质折叠的突变的表型效应。关于这种缓冲的尚未解决的问题包括其机制的性质,对种群遗传变异的影响,限制该机制的适应性取舍以及其在促进进化中的作用。回答这些问题对于理解缓冲作用对增加遗传变异和生态多样化的贡献至关重要。在这里,我们进行了实验进化,基因组重测序和计算分析,以确定表达高水平必需伴侣蛋白GroEL的大肠杆菌的取舍和进化轨迹。 GroEL大量存在于细菌中,特别是在具有大量有害突变的细菌中,提示其在突变缓冲中的作用。我们显示groEL的过表达对于实验室中不断发展的大型人群而言代价高昂,导致groE的表达在66代内下降。相比之下,在内共生细菌的强遗传漂移特性下进化的种群避免了灭绝或可以在大量GroEL存在的情况下被拯救。从高遗传漂移下进化而来的细胞重测序的基因组在高GroEL水平下对有害突变的耐受性明显高于天然水平,这表明GroEL在这些细胞中缓冲了突变。 GroEL在与环境相互作用的高度多样化的一组蛋白质中缓冲了突变,包括底物和离子膜转运蛋白,暗示了其在生态多样化中的作用。我们的结果揭示了突变缓冲的适应性折衷,以及群体中如何保持遗传变异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号