首页> 外文期刊>Modelling and simulation in materials science and engineering >Internal stress evolution in Fe laths deformed at low temperature analysed by dislocation dynamics simulations
【24h】

Internal stress evolution in Fe laths deformed at low temperature analysed by dislocation dynamics simulations

机译:用位错动力学模拟分析低温变形铁板条的内应力演化

获取原文
获取原文并翻译 | 示例
           

摘要

Stress evolution in Fe laths undergoing plastic deformation is investigated using three-dimensional dislocation dynamics simulations adapted to body centred cubic crystals, in the ductile to brittle transition temperature range. The selected boundary conditions, applied stress tensor and initial dislocation structures account for the realistic microstructure observed in bainitic steels. The effective stress field projected in the three different {1 0 0} cleavage planes is calculated for two different temperatures (50 and 200 K) and presented quantitatively, in the form of stress/frequency diagrams. It is shown that plastic activity tends to relax the stress acting in certain cleavage planes (the (0 1 0) and (0 0 1) planes) while, at the same time, amplifying the stress acting in other cleavage planes (the (1 0 0) planes). The selective stress amplification in the latter planes depends on the applied load direction, in combination with the limited set of available slip systems and the lath geometry. In the examined configuration, this selection effect is more pronounced with decreasing temperature, emphasizing the role of thermally activated plasticity on deformation-induced stress concentrations.
机译:使用适用于体心立方晶体的三维位错动力学模拟,研究了在延性到脆性转变温度范围内,Fe板条经历塑性变形的应力演化。选择的边界条件,施加的应力张量和初始位错结构说明了在贝氏体钢中观察到的实际微观结构。对于两个不同的温度(50和200 K),计算了在三个不同的{1 0 0}劈裂面上投影的有效应力场,并以应力/频率图的形式定量表示。结果表明,塑性活动趋向于放松作用在某些卵裂平面((0 1 0)和(0 0 1)平面)上的应力,而同时放大作用在其他卵裂平面上的应力((1 0 0)平面。后一平面中的选择性应力放大取决于所施加的载荷方向,以及有限的一组可用滑移系统和板条几何形状。在检查的配置中,这种选择效果随着温度的降低而更加明显,强调了热活化可塑性对变形引起的应力集中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号