首页> 外文期刊>Modelling and simulation in materials science and engineering >Effects of tip geometry on interfacial contact forces
【24h】

Effects of tip geometry on interfacial contact forces

机译:尖端几何形状对界面接触力的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Experimental techniques that utilize atomic force microscopy are routinely used to examine tribological properties of tip–sample interactions. While analysis of data obtained with these methods provides values for macroscale properties, such as interfacial shear strength, understanding nanoscale properties, such as contact radius, requires an atomic-scale approach. Molecular dynamics simulations provide the ability to numerically analyze the nanoscale origins of a wide-range of material and tribological properties. In this paper, the sliding contact between a self-assembled monolayer (SAM) and two countersurfaces (a nominally flat, amorphous carbon surface and a nearly spherical fullerene tip) is compared. By examining contact forces between the tip and monolayer atoms, large differences in monolayer behavior that occur due to tip geometry can be elucidated. The structure factor reveals that the fullerene tip creates a more disordered monolayer than the amorphous counterface. Friction forces were also studied using the atomic-level contact forces, which show that the depth at which the fullerene tip affects the SAMs substrate is much deeper than the amorphous counterface. The distribution of contact forces that contribute to friction and load were studied and show a difference in behavior between the two countersurfaces. Finally, while there are a large number of atoms that have a non-zero load during sliding, a smaller subset of 32 atoms carries ~96% of the load. Using this subset of atoms to compute contact radius reveals a greater agreement with the continuum mechanics models than using all atoms with a non-zero load. This paper highlights how computer simulations can yield insight into tribological interactions at the atomic scale.
机译:通常,利用原子力显微镜的实验技术来检查尖端-样品相互作用的摩擦学特性。虽然使用这些方法获得的数据分析提供了宏观特性(例如界面剪切强度)的值,但了解纳米级特性(例如接触半径)需要采用原子尺度方法。分子动力学模拟提供了对各种材料和摩擦学性质的纳米尺度起源进行数值分析的能力。在本文中,比较了自组装单层(SAM)和两个相对表面(名义上平坦的无定形碳表面和接近球形的富勒烯尖端)之间的滑动接触。通过检查尖端与单层原子之间的接触力,可以阐明由于尖端几何形状而引起的单层行为的巨大差异。结构因素表明,富勒烯尖端比无定形相对表面产生的无序层更紧密。还使用原子级接触力研究了摩擦力,该摩擦力表明富勒烯尖端影响SAMs衬底的深度比无定形相对表面深得多。研究了有助于摩擦和载荷的接触力分布,结果表明两个相对表面之间的行为有所不同。最后,尽管有大量原子在滑动过程中具有非零载荷,但较小的32个原子子集却承担了〜96%的载荷。与使用非零负载的所有原子相比,使用该原子子集来计算接触半径显示出与连续体力学模型更大的一致性。本文着重介绍了计算机模拟如何能够洞悉原子级的摩擦学相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号