首页> 外文期刊>Modelling and simulation in materials science and engineering >Computational modelling of large deformations in layered-silicate/PET nanocomposites near the glass transition
【24h】

Computational modelling of large deformations in layered-silicate/PET nanocomposites near the glass transition

机译:玻璃化转变附近的层状硅酸盐/ PET纳米复合材料中大变形的计算模型

获取原文
获取原文并翻译 | 示例
           

摘要

Layered-silicate nanoparticles offer a cost-effective reinforcement for thermoplastics. Computational modelling has been employed to study large deformations in layered-silicate/poly(ethylene terephthalate) (PET) nanocomposites near the glass transition, as would be experienced during industrial forming processes such as thermoforming or injection stretch blow moulding. Non-linear numerical modelling was applied, to predict the macroscopic large deformation behaviour, with morphology evolution and deformation occurring at the microscopic level, using the representative volume element (RVE) approach. A physically based elasto-viscoplastic constitutive model, describing the behaviour of the PET matrix within the RVE, was numerically implemented into a finite element solver (ABAQUS) using an UMAT subroutine. The implementation was designed to be robust, for accommodating large rotations and stretches of the matrix local to, and between, the nanoparticles. The nanocomposite morphology was reconstructed at the RVE level using a Monte-Carlo-based algorithm that placed straight, high-aspect ratio particles according to the specified orientation and volume fraction, with the assumption of periodicity. Computational experiments using this methodology enabled prediction of the strain-stiffening behaviour of the nanocomposite, observed experimentally, as functions of strain, strain rate, temperature and particle volume fraction. These results revealed the probable origins of the enhanced strain stiffening observed: (a) evolution of the morphology (through particle re-orientation) and (b) early onset of stress-induced pre-crystallization (and hence lock-up of viscous flow), triggered by the presence of particles. The computational model enabled prediction of the effects of process parameters (strain rate, temperature) on evolution of the morphology, and hence on the end-use properties.
机译:层状硅酸盐纳米颗粒为热塑性塑料提供了经济高效的增强材料。计算模型已用于研究玻璃化转变附近的层状硅酸盐/聚对苯二甲酸乙二酯(PET)纳米复合材料的大变形,这在工业成型过程(如热成型或注射拉伸吹塑)中会遇到。应用非线性数值建模,使用代表体积元素(RVE)方法,预测宏观大变形行为,并在微观水平上发生形态演化和变形。使用UMAT子例程将基于物理的弹黏塑性本构模型(描述RVE中的PET基质的行为)以数字方式实现为有限元求解器(ABAQUS)。该实现被设计为健壮的,以适应纳米粒子局部以及纳米粒子之间的大旋转和拉伸。使用基于Monte-Carlo的算法在RVE级别上重建纳米复合材料的形态,该算法根据指定的方向和体积分数(假定具有周期性)放置直的,高纵横比的粒子。使用这种方法进行的计算实验能够预测纳米复合材料的应变强化行为,该行为是通过应变,应变速率,温度和颗粒体积分数的函数进行实验观察的。这些结果揭示了观察到的应变刚度增强的可能起源:(a)形态演变(通过粒子重新定向)和(b)应力诱导的预结晶的提早出现(以及因此粘滞流动的锁定) ,由粒子的存在触发。该计算模型能够预测工艺参数(应变速率,温度)对形态演变的影响,从而对最终用途的特性产生影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号