...
首页> 外文期刊>Molecular & cellular proteomics: MCP >Reverse-Polynomial Dilution Calibration Methodology Extends Lower Limit of Quantification and Reduces Relative Residual Error in Targeted Peptide Measurements in Blood Plasma
【24h】

Reverse-Polynomial Dilution Calibration Methodology Extends Lower Limit of Quantification and Reduces Relative Residual Error in Targeted Peptide Measurements in Blood Plasma

机译:反多项式稀释校准方法论扩展了定量的下限,并降低了血浆中靶向肽测量的相对残留误差

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Matrix effect is the alteration of an analyte's concentration-signal response caused by co-existing ion components. With electrospray ionization (ESI), matrix effects are believed to be a function of the relative concentrations, ionization efficiency, and salvation energies of the analytes within the electrospray ionization droplet. For biological matrices such as plasma, the interactions between droplet components is immensely complex and the effect on analyte signal response not well elucidated. This study comprised of three sequential quantitative analyses: we investigated whether there is a generalizable correlation between the range of unique ions in a sample matrix (complexity); the amount of matrix components (concentration); and matrix effect, by comparing an E. coil digest matrix (similar to 2600 protein proteome) with phospholipid depleted human blood plasma, and unfractionated, nondepleted human plasma matrices (similar to 10(7) proteome) for six human plasma peptide multiple reaction monitoring assays. Our data set demonstrated analyte-specific interactions with matrix complexity and concentration properties resulting in significant ion suppression for all peptides (p < 0.01), with nonuniform effects on the ion signals of the analytes and their stable-isotope analogs. These matrix effects were then assessed for translation into relative residual error and precision effects in a low concentration (similar to 0-250 ng/ml) range across no-matrix, complex matrix, and highly complex matrix, when a standard addition stable isotope dilution calibration method was used. Relative residual error (%) and precision (CV%) by stable isotope dilution were within <20%; however, error in phospholipid-depleted and nondepleted plasma matrices were significantly higher compared with no-matrix (p = 0.006). Finally a novel reverse-polynomial dilution calibration method with and without phospholipid-depletion was compared with stable isotope dilution for relative residual error and precision. Reverse-polynomial dilution techniques extend the Lower Limit of Quantification and reduce error (p = 0.005) in low-concentration plasma peptide assays and is broadly applicable for verification phase Tier 2 multiplexed multiple reaction monitoring assay development within the FDA-National Cancer Institute (NCI) biomarker development pipeline.
机译:基质效应是由共存离子成分引起的分析物浓度信号响应的变化。对于电喷雾电离(ESI),据信基质效应是电喷雾电离液滴内分析物的相对浓度,电离效率和拯救能量的函数。对于生物基质(例如血浆),液滴成分之间的相互作用非常复杂,而且对分析物信号响应的影响也无法很好地阐明。这项研究包括三个顺序的定量分析:我们调查了样品基质中独特离子的范围(复杂性)之间是否存在可概括的相关性;基质成分的量(浓度);和线圈效应,通过比较大肠杆菌螺旋消化基质(类似于2600蛋白蛋白质组)与磷脂消耗的人类血浆和未分离的,非消耗的人类血浆基质(类似于10(7)蛋白质组)进行六个人血浆多肽多反应监测分析。我们的数据集证明了特定于分析物的相互作用以及基质的复杂性和浓度特性,导致所有肽的离子抑制效果显着(p <0.01),并对分析物及其稳定同位素类似物的离子信号产生非均匀影响。然后,当标准加标稳定同位素稀释时,评估这些基质效应在非基质,复杂基质和高度复杂基质中的低浓度(类似于0-250 ng / ml)范围内的相对残留误差和精密度的影响。使用校准方法。稳定同位素稀释后的相对残留误差(%)和精密度(CV%)在<20%以内;然而,与无基质相比,贫磷脂和无贫血浆血浆的误差显着更高(p = 0.006)。最后,比较了具有和不具有磷脂耗竭的新型反多项式稀释校准方法与稳定同位素稀释的相对残留误差和精度。逆多项式稀释技术扩展了低浓度血浆肽检测中的定量下限并减少了误差(p = 0.005),广泛适用于FDA国家癌症研究所(NCI)的阶段2多重多重反应监测分析开发的验证)生物标志物开发流程。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号