首页> 外文期刊>Molecular & cellular proteomics: MCP >S-Bacillithiolation Protects Against Hypochlorite Stress in Bacillus subtilis as Revealed by Transcriptomics and Redox Proteomics
【24h】

S-Bacillithiolation Protects Against Hypochlorite Stress in Bacillus subtilis as Revealed by Transcriptomics and Redox Proteomics

机译:转录组学和氧化还原蛋白组学揭示了S-Bacillithiolation可防止枯草芽孢杆菌中的次氯酸盐胁迫

获取原文
获取原文并翻译 | 示例
       

摘要

Protein S-thiolation is a post-translational thiol-modification that controls redox-sensing transcription factors and protects active site cysteine residues against irreversible oxidation. In Bacillus subtilis the MarR-type repressor OhrR was shown to sense organic hydroperoxides via formation of mixed disulfides with the redox buffer bacillithiol (Cys-GlcN-Malate, BSH), termed as S-bacillithiola-tion. Here we have studied changes in the transcriptome and redox proteome caused by the strong oxidant hypo-chloric acid in B. subtilis. The expression profile of NaOCl stress is indicative of disulfide stress as shown by the induction of the thiol- and oxidative stress-specific Spx, CtsR, and PerR regulons. Thiol redox proteomics identified only few cytoplasmic proteins with reversible thiol-oxidations in response to NaOCl stress that include GapA and MetE. Shotgun-liquid chromatography-tandem MS analyses revealed that GapA, Spx, and PerR are oxidized to intramolecular disulfides by NaOCl stress. Furthermore, we identified six S-bacillithiolated proteins in NaOCl-treated cells, including the OhrR repressor, two methionine synthases MetE and YxjG, the inorganic py-rophosphatase PpaC, the 3-D-phosphoglycerate dehy-drogenase SerA, and the putative bacilliredoxin YphP. S-bacillithiolation of the OhrR repressor leads to up-regulation of the OhrA peroxiredoxin that confers together with BSH specific protection against NaOCl. S-bacillithiolation of MetE, YxjG, PpaC and SerA causes hypochlorite-induced methionine starvation as supported by the induction of the S-box regulon. The mechanism of S-glutathionylation of MetE has been described in Escherichia coli also leading to enzyme inactivation and methionine auxotrophy. In summary, our studies discover an important role of the bacillithiol redox buffer in protection against hypochloric acid by S-bacillithiolation of the redox-sensing regulator OhrR and of four enzymes of the methionine biosynthesis pathway.
机译:蛋白S硫醇化是翻译后的巯基修饰,可控制氧化还原敏感的转录因子并保护活性位点的半胱氨酸残基免受不可逆的氧化作用。在枯草芽孢杆菌中,MarR型阻遏物OhrR被证明通过与氧化还原缓冲液杆菌硫醇(Cys-GlcN-苹果酸酯,BSH)形成混合的二硫化物来感知有机氢过氧化物,被称为S-杆菌硫醇解。在这里,我们研究了枯草芽孢杆菌中强氧化剂次氯酸引起的转录组和氧化还原蛋白质组的变化。 NaOCl应激的表达特征表明是二硫键应激,如巯基和氧化应激特异性Spx,CtsR和PerR调节剂的诱导所示。硫醇氧化还原蛋白质组学仅识别出响应于NaOCl胁迫而具有可逆硫醇氧化的胞质蛋白,包括GapA和MetE。弹枪液相色谱-串联质谱分析表明,NaOCl胁迫将GapA,Spx和PerR氧化为分子内二硫化物。此外,我们在NaOCl处理的细胞中鉴定了6种S-bacillithiolated蛋白,包括OhrR阻遏物,两个蛋氨酸合酶MetE和YxjG,无机焦磷酸酶PpaC,3-D-磷酸甘油酸脱氢酶SerA和推定的杆菌氧还蛋白YphP 。 OhrR阻遏物的S-bacillithiolation导致OhrA过氧化物酶的上调,这与针对NaOCl的BSH特异性保护共同作用。 MetE,YxjG,PpaC和SerA的S-bacillithiolation引起次氯酸盐诱导的蛋氨酸饥饿,这是由S-box调节子的诱导所支持的。已经在大肠杆菌中描述了MetE的S-谷胱甘肽酰化的机理,其还导致酶失活和蛋氨酸营养缺陷。总而言之,我们的研究发现了乙硫醇氧化还原缓冲液在氧化还原敏感调节剂OhrR和蛋氨酸生物合成途径的四种酶的S-乙硫醇化作用中对次氯酸的保护中起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号