首页> 外文期刊>Biochemistry >HOW ALLOSTERIC EFFECTORS CAN BIND TO THE SAME PROTEIN RESIDUE AND PRODUCE OPPOSITE SHIFTS IN THE ALLOSTERIC EQUILIBRIUM
【24h】

HOW ALLOSTERIC EFFECTORS CAN BIND TO THE SAME PROTEIN RESIDUE AND PRODUCE OPPOSITE SHIFTS IN THE ALLOSTERIC EQUILIBRIUM

机译:变构效应物如何结合到相同的蛋白质残基上,并在变构平衡中产生相反的位移

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Monoaldehyde allosteric effecters of hemoglobin were designed, using molecular modeling software (GRID), to form a Schiff base adduct with the Val 1 alpha N-terminal nitrogens and interact via a salt bridge with Arg 141 alpha of the opposite subunit. The designed molecules were synthesized if not available. It was envisioned that the molecules, which are aldehyde acids, would produce a high-affinity hemoglobin with potential interest as antisickling agents similar to other aldehyde acids reported earlier. X-ray crystallographic analysis indicated that the aldehyde acids did bind as modeled de novo in symmetry-related pairs to the alpha subunit N-terminal nitrogens. However, oxygen equilibrium curves run on solutions obtained from T- (tense) state hemoglobin crystals of reacted effector molecules produced low-affinity hemoglobins. The shift in the allosteric equilibrium was opposite to that expected, We concluded that the observed shift in allosteric equilibrium was due to the acid, group on the monoaldehyde aromatic ring that forms a salt bridge with the guanidinium ion of Arg 141 alpha on the opposite subunit. This added constraint to the T-state structure that ties two subunits across the molecular symmetry axis shifts the equilibrium further toward the T-state. We tested this idea by comparing aldehydes that form Schiff base interactions with the same Val 1 alpha residues but do not interact across the dimer subunit symmetry axis (a new one in this study with no acid group and others that have had determined crystal structures), The latter aldehydes shift the allosteric equilibrium toward the R-state. A hypothesis to predict the direction in shift of the allosteric equilibrium is made and indicates that it is not exclusively where the molecule binds but how it interacts with the protein to stabilize or destabilize the T- (tense) allosteric state.
机译:使用分子建模软件(GRID)设计了血红蛋白的单醛变构效应物,以形成具有Val 1 alpha N端氮的席夫碱加合物,并通过盐桥与相对亚基的Arg 141 alpha相互作用。如果无法获得,则合成设计的分子。可以预见的是,作为醛酸的分子将产生高亲和力的血红蛋白,其潜在的兴趣是作为抗溶血剂,类似于先前报道的其他醛酸。 X射线晶体学分析表明,醛酸确实以对称相关对的形式从头结合到α亚基N端氮上。然而,氧平衡曲线在从反应的效应子分子产生低亲和力血红蛋白的T-态(时态)血红蛋白晶体获得的溶液上运行。变构平衡的偏移与预期的相反。我们得出的结论是,观察到的变构平衡的偏移是由于单醛芳环上的酸基团,该酸与相反亚基上的Arg 141 alpha的胍盐离子形成盐桥。跨分子对称轴连接两个亚基的T状态结构的这种附加约束使平衡进一步向T状态移动。我们通过比较与相同的Val 1 alpha残基形成席夫碱相互作用的醛,但不跨二聚体亚基对称轴相互作用的醛(本研究中的一个新化合物,它没有酸基,而其他的已经确定了晶体结构)进行了测试,后面的醛将变构平衡移向R状态。进行了预测变构平衡转移方向的假设,该假说表明它不仅是分子结合的位置,还在于它如何与蛋白质相互作用以稳定或破坏T-(紧张)变构状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号