首页> 外文期刊>Minerals Engineering >Metals and sulphate removal from acid mine drainage in two steps via ferrite sludge and barium sulphate formation
【24h】

Metals and sulphate removal from acid mine drainage in two steps via ferrite sludge and barium sulphate formation

机译:通过铁氧体淤泥和硫酸钡的形成,分两步从酸性矿山排水中去除金属和硫酸盐

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, primary test of ferrite formation by coprecipitation method from pure Fe(NO3)(3)center dot 9H(2)O and FeSO4 center dot 7H(2)O were evaluated at different pH and temperature by continues stirring using magnetic stirrer. The optimized method was applied on simulated and real acid mine drainage (AMD). The impact of simultaneous removal of metals and sulphate on the magnetic moment of ferrite sludge and addition of ferrite or ferrite sludge seeds into real AMD samples were also investigated. The XRD results of synthesised ferrite from pure binary salts confirmed that presence of heat and increased pH improved the degree of crystallite of ferrite. During neutralization of AMD using sodium hydroxide, gypsum was not precipitated in the absence of calcium hydroxide or barium ions. Consequently, the two step processes were applied; whereby metals are removed in the first step via ferrite sludge formation using sodium hydroxide and followed by treatment of the filtrate with barium chloride or barium hydroxide for complete sulphate removal as barium sulphate precipitate. From the analysis results, the ferrite sludge produced separately from sulphate showed higher magnetic moments than produced simultaneously. In the pH range of 7-8.5, at temperature of 60 degrees C, 93%, 12%, and 28%, and 99.6%, 57.5% and 47.5% of Fe, Mn and Co were removed from real AMD; in the absence and presence of ferrite seeds in 20 min reaction time, respectively. Furthermore, the rate of metal removals and magnetic moments of synthesised ferrite sludge were increased in the presence of ferrite seeds. Generally, these results indicated that AMD could be used as a resource for production of commercially valuable chemicals, which in turn could help to offset the cost of treatment. (C) 2015 Elsevier Ltd. All rights reserved.
机译:在这项工作中,通过使用磁力搅拌器继续搅拌,在不同的pH和温度下,评估了通过共沉淀法从纯Fe(NO3)(3)中心点9H(2)O和FeSO4中心点7H(2)O形成铁素体的初步测试。该优化方法被应用于模拟和真实酸性矿山排水(AMD)。还研究了同时去除金属和硫酸盐对铁氧体污泥的磁矩以及将铁氧体或铁氧体污泥种子添加到实际AMD样品中的影响。由纯二元盐合成的铁氧体的XRD结果证实,存在热量和增加pH可以改善铁氧体的微晶度。在使用氢氧化钠中和AMD的过程中,在不存在氢氧化钙或钡离子的情况下,石膏不会沉淀。因此,应用了两个步骤。第一步,通过使用氢氧化钠形成铁氧体污泥,除去金属,然后用氯化钡或氢氧化钡处理滤液,以硫酸钡沉淀的形式完全除去硫酸盐。从分析结果来看,与硫酸盐分开产生的铁氧体污泥显示出比同时产生的更高的磁矩。在7-8.5的pH范围内,在60摄氏度的温度下,从真正的AMD中去除了93%,12%和28%以及99.6%,57.5%和47.5%的Fe,Mn和Co。在20分钟的反应时间内分别存在和不存在铁素体种子。此外,在存在铁氧体晶种的情况下,合成铁氧体污泥的金属去除率和磁矩增加。通常,这些结果表明AMD可以用作生产具有商业价值的化学药品的资源,从而可以帮助抵消治疗费用。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号