...
首页> 外文期刊>Mineralogical Magazine >Biocalcification by Emiliania huxleyi in batch culturegxperiments
【24h】

Biocalcification by Emiliania huxleyi in batch culturegxperiments

机译:虎眼草在分批培养中的生物钙化作用

获取原文
获取原文并翻译 | 示例

摘要

Coccolithophores, among which Emiliania huxleyi is the most abundant and widespread species, are considered the most productive calcifying organism on earth. The export of organic carbon and calcification are the main drivers of the biological CO_2 pump and are expected to change with oceanic acidification. Coccolithophores are further known to produce transparent exopolymer particles (TEP) that promote particle aggregation. As a result, the TEP and biogenic calcium carbonate (CaCO_3) contribute to the export of carbon from the surface ocean to deep waters. In this context, we followed the development and the decline of E. huxleyi using batch experiments with monospecific cultures. We studied the link between different processes such as photosynthesis, calcification and the production of TEP. The onset of calcification was delayed in relation to photosynthesis. The timing and the general feature of the dynamics of calcification were closely related to the saturation state of seawater with respect to calcite, OMEGA_(cal). The production of TEP was enhanced after the decline of phytoplankton growth. After nutrient exhaustion, particulate organic carbon (POC) concentration increased linearly with increasing TEP concentration, suggesting that TEP contributes to the POC increase. The production of CaCO_3 is also strongly correlated with that of TEP, suggesting that calcification may be considered as a source of TEP precursors.
机译:鳞球藻被认为是地球上生产力最高的钙化生物,其中Emililiania huxleyi是最丰富和广泛的物种。有机碳的出口和钙化是生物CO_2泵的主要驱动力,预计随着海洋酸化而变化。进一步已知,球墨石团会产生促进颗粒聚集的透明外聚合物颗粒(TEP)。结果,TEP和生物碳酸钙(CaCO_3)促进了碳从表层海洋向深水的出口。在这种情况下,我们使用具有单特异性培养物的分批实验来追踪赫黎大肠杆菌的发展和衰落。我们研究了光合作用,钙化和TEP产生等不同过程之间的联系。钙化的发生与光合作用有关。钙化动力学的时间和一般特征与方解石OMEGA_(cal)的海水饱和状态密切相关。浮游植物生长下降后,TEP的产量增加。营养物质耗尽后,颗粒有机碳(POC)浓度随TEP浓度的增加而线性增加,这表明TEP有助于POC的增加。 CaCO_3的产生也与TEP的产生密切相关,这表明钙化可被视为TEP前体的来源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号