首页> 外文期刊>Mineralogical Magazine >The steam condensate alteration mineralogy of Ruatapu cave, Orakei Korako geothermal field, Taupo Volcanic Zone, New Zealand
【24h】

The steam condensate alteration mineralogy of Ruatapu cave, Orakei Korako geothermal field, Taupo Volcanic Zone, New Zealand

机译:新西兰陶波火山区Orakei Korako地热田Ruatapu洞穴的蒸汽凝析蚀变矿物学

获取原文
获取原文并翻译 | 示例
           

摘要

Ruatapu cave has developed beneath a block of hydrothermally altered Quaternary vitric tuft in the active Orakei Korako geothermal field The cave extends 45 m with a vertical drop of 23 m, to a shallow pool of clear, sulfate-rich (~450 #mu#g/g) warm (T= 43-48deg C) acid (pH= 3.0) water. Steam, accompanied by H_2S, rises from the pool surface from a second pool nearby, and from fumaroles and joints in the ignimbrite, to condense on surfaces within the cave Oxidation of the H_2S to H_2SO_4 produces acid sulfate fluids which react with the surgical rocks to generate three principal and distinct assemblages of secondary minerals. Kaolinite +- opal-A +- cristobalite +- alunite +- alunogen dominate the assemblage at the cave mouth; the essential Al, K and Si are derived from the tufts and Na, Ca, Fe and Mg removed. In the main body of the cave the highly limited through flow of water results in the more soluble of the leached constituents, notably Na and K, being retained in surface moisture and becoming available to form tamarugite and potash alum as efflorescences, in part at the expense of kaolin, along with lesser amounts of alunogen, meta-alunogen, mirabilite, halotrichite, kalinite, gypsum and, possibly, tschermigite; the particular species being determined by the prevailing physico-chemical conditions. Heat and moisture assist in moving Fe out of the rock to the air-water interface hut, unlike typical surficial acid alteration systems elsewhere in the TVZ, there is an insufficient flow of water, of appropriate Eh-pH, to continue to move Fe out of the cave system. Much becomes locally immobilized as Fe oxides and oxyhydroxides that mottle the sides and roof of the cave. Jarosite crusts have developed where acid sulfate pool waters have had protracted contact with ignimbrite wallrock coated with once-living microbial mats. Subsequent lowering of the waters has caused the porous jarositic crusts to alter to potash alum +- akaganeite or schwertmannite. Meteoric water, with chloride concentrations of up to 10,000 #mu#g/g, seeping through the roof produces a white, semi-thixotropic slurry which when dried yields 5.7 wt. percent chloride and consisted of tamarugite plus halite. Some of this chloride (and sulfate) eventually enters the pool waters which have Cl~- concentrations of 200 #mu#g/g. This implies that the pools are not necessarily fed by a neutral pH alkali chloride fluid ascending from the geothermal reservoir, but are perched waters heated by ascending steam and fed largely by steam condensate.
机译:Ruatapu洞穴在活跃的Orakei Korako地热田中的一块热液蚀变的第四纪玻璃纤维簇下面发展,该洞穴延伸45 m,垂直降落23 m,到达一个浅层的透明,富含硫酸盐的矿池(〜450#mu#g / g)温水(T = 43-48℃)酸(pH = 3.0)水。蒸汽和H_2S一起从附近的第二个池中,从火成岩中的喷气孔和接头处的池表面升起,凝结在洞穴内的表面上。H_2S氧化成H_2SO_4产生酸性硫酸盐流体,该酸性硫酸盐流体与手术用石反应生成产生三种主要且独特的次生矿物组合。高岭石+-蛋白石A +-方石英+-亚铝石+-铝精矿占主导地位。必需的Al,K和Si来源于簇绒,而Na,Ca,Fe和Mg被去除。在洞穴的主体中,水流的高度限制导致浸出的成分(尤其是Na和K)的溶解度更高,它们保留在地表水分中,并可以形成风化的菱铁矿和钾矾,部分地在高岭土的消耗,以及较少量的铝质,偏金刚砂,芒硝,卤长辉石,高岭石,石膏,以及可能的辉绿石;具体的种类由当时的物理化学条件决定。热量和水分有助于将Fe从岩石中移出至空气-水界面小屋,这与TVZ中其他地方的典型表面酸蚀变系统不同,适当的Eh-pH的水流量不足,无法继续将Fe移出洞穴系统。铁氧化物和羟基氧化物会斑驳洞穴的侧面和屋顶,从而使许多东西在本地无法固定。在酸性硫酸盐池水与覆盖有曾经生活过的微生物垫的火成岩围岩长期接触的地方,已经发展出黄铁矿结壳。随后的水位下降导致多孔的钾盐岩壳变成钾盐明矾+-赤铁矿或schwertmannite。氯化物浓度高达10,000#mu#g / g的流星水从屋顶渗出时会产生白色的半触变性浆液,干燥后会产生5.7 wt。氯化物百分比,由钽铁矿加卤石组成。这些氯化物(和硫酸盐)中的一些最终进入池水中,其中Cl〜-浓度为200#mu#g / g。这意味着这些池不一定要由从地热储层上升的中性pH碱金属氯化物流体进料,而是由上升蒸汽加热并主要由蒸汽凝结物进料的栖息水。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号