...
首页> 外文期刊>Mineralium deposita >Genesis of sediment-hosted stratiform copper–cobalt mineralization at Luiswishi and Kamoto, Katanga Copperbelt (Democratic Republic of Congo)
【24h】

Genesis of sediment-hosted stratiform copper–cobalt mineralization at Luiswishi and Kamoto, Katanga Copperbelt (Democratic Republic of Congo)

机译:加丹加铜矿带的路易斯维希和卡本的沉积物状层状铜钴矿化成因(刚果民主共和国)

获取原文
获取原文并翻译 | 示例
           

摘要

The sediment-hosted stratiform Cu–Co mineralization of the Luiswishi and Kamoto deposits in the Katangan Copperbelt is hosted by the Neoproterozoic Mines Subgroup. Two main hypogene Cu–Co sulfide mineralization stages and associated gangue minerals (dolomite and quartz) are distinguished. The first is an early diagenetic, typical stratiform mineralization with finegrained minerals, whereas the second is a multistage synorogenic stratiform to stratabound mineralization with coarse-grained minerals. For both stages, the main hypogene Cu–Co sulfide minerals are chalcopyrite, bornite, carrollite, and chalcocite. These minerals are in many places replaced by supergene sulfides (e.g., digenite and covellite), especially near the surface, and are completely oxidized in the weathered superficial zone and in surface outcrops, with malachite, heterogenite, chrysocolla, and azurite as the main oxidation products. The hypogene sulfides of the first Cu–Co stage display δ~(34)S values (-10.3‰ to +3.1‰ Vienna Canyon Diablo Troilite (VCDT)), which partly overlap with the δ34S signature of framboidal pyrites (-28.7‰ to 4.2‰ V-CDT) and have Δ~(34)S_(SO4)-Sulfides in the range of 14.4‰ to 27.8‰. This fractionation is consistent with bacterial sulfate reduction (BSR). The hypogene sulfides of the second Cu–Co stage display δ~(34)S signatures that are either similar (-13.1‰ to +5.2‰ V-CDT) to the δ~(34)S values of the sulfides of the first Cu–Co stage or comparable (+18.6‰ to +21.0‰ VCDT) to the δ~(34)S of Neoproterozoic seawater. This indicates that the sulfides of the second stage obtained their sulfur by both remobilization from early diagenetic sulfides and from thermochemical sulfate reduction (TSR). The carbon (-9.9‰to -1.4‰Vienna Pee Dee Belemnite (VPDB)) and oxygen (-14.3‰ to -7.7‰ V-PDB) isotope signatures of dolomites associated with the first Cu–Co stage are in agreement with the interpretation that these dolomites are by-products of BSR. The carbon (-8.6‰ to +0.3‰ VPDB) and oxygen (-24.0‰ to -10.3‰ V-PDB) isotope signatures of dolomites associated with the second Cu–Co stage are mostly similar to the δ~(13)C (-7.1‰ to +1.3‰ VPDB) and δ~(18)O (-14.5‰ to -7.2‰ V-PDB) of the host rock and of the dolomites of the first Cu–Co stage. This indicates that the dolomites of the second Cu–Co stage precipitated from a high-temperature, host rock-buffered fluid, possibly under the influence of TSR. The dolomites associated with the first Cu–Co stage are characterized by significantly radiogenic Sr isotope signatures (0.70987 to 0.73576) that show a good correspondence with the Sr isotope signatures of the granitic basement rocks at an age of ca. 816 Ma. This indicates that the mineralizing fluid of the first Cu–Co stage has most likely leached radiogenic Sr and Cu–Co metals by interaction with the underlying basement rocks and/orwith arenitic sedimentary rocks derived from such a basement. In contrast, the Sr isotope signatures (0.70883 to 0.71215) of the dolomites associated with the second stage show a good correspondence with the ~(87)Sr/~(86)Sr ratios (0.70723 to 0.70927) of poorly mineralized/barren host rocks at ca. 590 Ma. This indicates that the fluid of the second Cu–Co stage was likely a remobilizing fluid that significantly interacted with the country rocks and possibly did not mobilize additional metals from the basement rocks.
机译:加元安铜矿带的路易斯维希和卡莫特沉积物以沉积物为基质的层状铜钴矿化是由新元古代矿山亚组主持的。区分了两个主要的次生Cu-Co硫化物矿化阶段和相关的脉石矿物(白云石和石英)。第一个是早期成岩,典型的层状矿化和细粒矿物,而第二个是多阶段协同成因的层状到粗粒状矿物的层状成矿。在这两个阶段,主要的次生Cu-Co硫化物矿物均为黄铜矿,斑铁矿,红柱石和黄铜矿。这些矿物质在许多地方被表生硫化物(例如,地闪石和玄武岩)所取代,尤其是在地表附近,并且在风化的表层区域和地表露头中被完全氧化,其中孔雀石,异质岩,温石棉和青铜矿为主要氧化层。产品。 Cu-Co阶段的次生硫化物显示出δ〜(34)S值(-10.3‰至+ 3.1‰维也纳峡谷暗黑破坏神特洛伊特(VCDT)),部分与黄菊黄铁矿的δ34S特征(-28.7‰至(4.2‰V-CDT)并具有14.4‰至27.8‰范围内的Δ〜(34)S_(SO4)-硫化物。该分级与细菌硫酸盐还原(BSR)一致。第二个Cu-Co阶段的次生硫化物显示出δ〜(34)S特征,与第一个Cu的硫化物的δ〜(34)S值相似(-13.1‰至+ 5.2‰V-CDT)。 -Co阶段或与新元古代海水的δ〜(34)S相近(+ 18.6‰至+ 21.0‰VCDT)。这表明第二阶段的硫化物是通过早期成岩硫化物的固定化和热化学硫酸盐还原(TSR)的结合而获得的。与第一个Cu-Co阶段相关的白云岩的碳(-9.9‰至-1.4‰维也纳小便白云母(VPDB))和氧(-14.3‰至-7.7‰V-PDB)同位素特征与解释一致这些白云石是BSR的副产品。与第二阶段Cu-Co有关的白云岩的碳(-8.6‰至+ 0.3‰VPDB)和氧(-24.0‰至-10.3‰V-PDB)同位素特征与δ〜(13)C最为相似( Cu-Co第一阶段的主体岩石和白云岩的-7.1‰至+ 1.3‰VPDB)和δ〜(18)O(-14.5‰至-7.2‰V-PDB)。这表明第二阶段的Cu-Co阶段白云岩可能是由TSR的影响下从高温的岩石缓冲液中沉淀出来的。与第一个Cu-Co阶段相关的白云岩的特征是具有明显放射成因的Sr同位素特征(0.70987至0.73576),与花岗岩年龄约在年龄的Sr同位素特征具有良好的对应关系。 816马这表明第一个Cu-Co阶段的矿化流体最有可能通过与下层基底岩和/或与这种基底衍生的砂质沉积岩相互作用而浸出放射性Sr和Cu-Co金属。相反,与第二阶段相关的白云岩的Sr同位素特征(0.70883至0.71215)与矿化度差/贫瘠的主岩的〜(87)Sr /〜(86)Sr比(0.70723至0.70927)显示出良好的对应关系。在大约590毫安。这表明第二阶段的Cu-Co流体可能是一种迁移流体,与乡村岩石发生了显着相互作用,并且可能没有从基底岩石中迁移出其他金属。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号