...
首页> 外文期刊>Microsystem technologies >Design and implementation of LQGLTR controller for a magnetic telemanipulation system-performance evaluation and energy saving
【24h】

Design and implementation of LQGLTR controller for a magnetic telemanipulation system-performance evaluation and energy saving

机译:电磁遥控系统LQG LTR控制器的设计与实现-性能评估和节能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper deals with designing a telemanipulation system (TMS) for microrobotics applications. The TMS uses magnetic levitation technology for the three-dimensional (3-D) manipulation of a microrobot. The TMS is made up of two separate components: a magnetic drive unit and a microrobot. The magnetic drive unit is developed to generate the magnetic field for propelling the microrobot in an enclosed environment. The drive unit consists of electromagnets, a disc pole-piece for connecting the magnetic poles, and a yoke. To handle the 3-D high precision motion control of the microrobot, experimental magnetic field measurements coupled with numerical analysis were done to identify the dynamic model of levitation. This approach leads to the design of a linear quadratic Gaussian (LQG) control system, based on the derived state-space model. Based on the PID controller performance, the LQG controller provides considerable improvement in transient response and cross coupling errors. The 3-D motion control capability of the LQG control method is verified experimentally, and it is demonstrated that the microrobot can be operated in the TMS workspace, vertical range of 30 mm and the horizontal range of 32 × 32 mm~2, with RMS error on the order of 10 μm in the vertical and 2.2μm in the horizontal direction. In the vertical motion, the cross coupling error of the LQG controller is nine times smaller than that of the PID controller. A pre-magnetized pole-piece is proposed to compensate for gravity effect and reduces the system's energy consumption. This pole-piece provides 66% energy saving for the system's workspace operations.
机译:本文涉及为微型机器人应用设计远程操纵系统(TMS)。 TMS使用磁悬浮技术对微型机器人进行三维(3-D)处理。 TMS由两个独立的组件组成:磁驱动单元和微型机器人。磁驱动单元被开发为产生磁场,以在封闭环境中推动微型机器人。驱动单元由电磁体,用于连接磁极的圆盘极靴和磁轭组成。为了处理微型机器人的3-D高精度运动控制,进行了实验磁场测量和数值分析,以识别悬浮力的动力学模型。这种方法基于导出的状态空间模型,导致了线性二次高斯(LQG)控制系统的设计。基于PID控制器的性能,LQG控制器在瞬态响应和交叉耦合误差方面提供了可观的改进。通过实验验证了LQG控制方法的3-D运动控制能力,并证明了微型机器人可以在TMS工作区中操作,垂直范围为30 mm,水平范围为32×32 mm〜2,具有RMS。垂直误差约为10μm,水平误差约为2.2μm。在垂直运动中,LQG控制器的交叉耦合误差比PID控制器的交叉耦合误差小9倍。提出了一种预磁化极靴,以补偿重力效应并降低系统的能耗。该极靴为系统的工作空间操作节省了66%的能源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号