...
首页> 外文期刊>Biochemistry >The molecular basis of Celmer's rules: the stereochemistry of the condensation step in chain extension on the erythromycin polyketide synthase
【24h】

The molecular basis of Celmer's rules: the stereochemistry of the condensation step in chain extension on the erythromycin polyketide synthase

机译:Celmer规则的分子基础:红霉素聚酮化合物合酶上扩链缩合步骤的立体化学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Modular polyketide synthases (PKSs), for example, the 6-deoxyerythronolide B synthase (DEBS) responsible for synthesis of the aglycone core of the macrolide antibiotic erythromycin, generate an impressive diversity of asymmetric centers in their polyketide products. However, as noted by Celmer, macrolides have the same absolute configuration at all comparable stereocenters. Understanding how the stereochemistry of chain extension in controlled is therefore crucial to determining the common mechanism of action of these enzymes. We aimed to elucidate the molecular basis of Celmer's rules through in vitro studies with DEBS 1-TE, a bimodular derivative of DEBS from Saccharopolyspora erythraea, which uses (2S)-methylmalonyl-coenzyme. A to produce both D- and L-methyl centers in its triketide lactone product. We show here that condensation of (2S)-methylmalonyl-CoA in module 2 proceeds with decarboxylative inversion without cleavage of the C-H bond adjacent to the methyl group; in contrast, in module 1 the chain extension process involves loss of the hydrogen attached to C-2 of the methylmalonyl-CoA precursor. The production of the D-methyl center in module 2 without loss of hydrogen from the asymmetric center of the (2S)-methylmalonyl-CoA establishes that condensation takes place with inversion of configuration as in fatty acid biosynthesis. The loss of the key hydrogen from the (2S)-methylmalonyl-CoA to produce the L-methyl center generated in module 1 implies that an additional obligatory epimerization step takes place in that module. The nature and timing of the epimerization remain to be established.
机译:模块化聚酮化合物合酶(PKS),例如负责合成大环内酯类抗生素红霉素的糖苷配基核心的6-脱氧赤藓醇B合酶(DEBS),在其聚酮化合物产品中产生了令人印象深刻的不对称中心多样性。但是,正如Celmer所指出的,大环内酯类化合物在所有可比较的立体中心具有相同的绝对构型。因此,了解受控链延伸的立体化学如何对确定这些酶的共同作用机制至关重要。我们的目的是通过与DEBS 1-TE的体外研究来阐明Celmer规则的分子基础,DEBS 1-TE是来自红糖酵母(Saccharopolyspora erythraea)的DEBS的双模衍生物,它使用(2S)-甲基丙二酸辅酶。在其三酮化物内酯产品中同时产生D-和L-甲基中心的A。我们在这里显示,模块2中的(2S)-甲基丙二酰-CoA缩合反应进行脱羧转化,而不会裂解与甲基相邻的C-H键;相反,在模块1中,扩链过程涉及与甲基丙二酰-CoA前体的C-2相连的氢的损失。在模块2中D-甲基中心的产生而没有氢从(2S)-甲基丙二酰-CoA的不对称中心的损失,证实了缩合发生与脂肪酸生物合成中的构型相反。 (2S)-甲基丙二酰-CoA失去关键氢,产生模块1中产生的L-甲基中心,意味着该模块中发生了附加的强制性差向异构化步骤。差向异构的性质和时间仍有待确定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号