首页> 外文期刊>Metabolic engineering >A method for analysis and design of metabolism using metabolomics data and kinetic models: Application on lipidomics using a novel kinetic model of sphingolipid metabolism
【24h】

A method for analysis and design of metabolism using metabolomics data and kinetic models: Application on lipidomics using a novel kinetic model of sphingolipid metabolism

机译:使用代谢组学数据和动力学模型进行代谢分析和设计的方法:使用新的鞘脂代谢动力学模型在脂质组学上的应用

获取原文
获取原文并翻译 | 示例
       

摘要

We present a model-based method, designated Inverse Metabolic Control Analysis (IMCA), which can be used in conjunction with classical Metabolic Control Analysis for the analysis and design of cellular metabolism. We demonstrate the capabilities of the method by first developing a comprehensively cu rated kinetic model of sphingolipid biosynthesis in the yeast Saccharomyces cerevisiae. Next we apply IMCA using the model and integrating lipidomics data. The combinatorial complexity of the synthesis of sphingolipid molecules, along with the operational complexity of the participating enzymes of the pathway, presents an excellent case study for testing the capabilities of the IMCA. The exceptional agreement of the predictions of the method with genome-wide data highlights the importance and value of a comprehensive and consistent engineering approach for the development of such methods and models. Based on the analysis, we identified the class of enzymes regulating the distribution of sphin-golipids among species and hydroxylation states, with the D-phospholipase SP014 being one of the most prominent. The method and the applications presented here can be used for a broader, model-based inverse metabolic engineering approach. (C) 2016 The Authors. Published by Elsevier Inc. On behalf of International Metabolic Engineering Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nci/4.0/).
机译:我们提出了一种基于模型的方法,称为逆代谢控制分析(IMCA),可以与经典代谢控制分析结合使用,用于细胞代谢的分析和设计。我们通过首先开发啤酒酵母中鞘脂生物合成的综合计算动力学模型来证明该方法的功能。接下来,我们使用该模型并整合脂质组学数据来应用IMCA。鞘脂分子合成的组合复杂性,以及该途径参与酶的操作复杂性,为测试IMCA的功能提供了出色的案例研究。该方法的预测与全基因组数据的特殊一致性突出了开发这种方法和模型的全面一致的工程方法的重要性和价值。在分析的基础上,我们确定了调节鞘氨醇在物种和羟基化状态之间分布的酶类别,其中D-磷脂酶SP014是最突出的酶之一。本文介绍的方法和应用程序可用于更广泛的基于模型的逆代谢工程方法。 (C)2016作者。由Elsevier Inc.发行,代表国际代谢工程学会。这是CC BY-NC-ND许可(http://creativecommons.org/licenses/by-nc-nci/4.0/)下的开放获取文章。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号