首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >Fatigue Crack Growth Behavior of 2124/SiC/10p Functionally Graded Materials
【24h】

Fatigue Crack Growth Behavior of 2124/SiC/10p Functionally Graded Materials

机译:2124 / SiC / 10p功能梯度材料的疲劳裂纹扩展行为

获取原文
获取原文并翻译 | 示例
           

摘要

Powder metallurgy processing involving cold pressing and hot extrusion has been used to fabricate bulk functionally graded materials (FGMs) based on the 2124/SiC/10p composite system. Two forms of single-core bulk FGMs with circular cross section were fabricated. One form (designated 10SiC-2124) had a central core of unreinforced Al-2124 alloy that was surrounded by a 2124/SiC/10p reinforced surface layer: the other (designated 2124-10SiC) had a composite core and an alloy surface layer. These forms enabled the effect of the radial graded core on fatigue to be investigated with fatigue crack propagation from either (1) a ductile core to a more brittle region or (2) a brittle core to a ductile region of the FGM. The fatigue crack growth rate was measured using a constant applied stress intensity factor range (#DELTA#K = 7 MPa m~(1/2)) technique. Two main fatigue crack growth rates were distinguished corresponding to growth in the core and in the surface layer. The results show that FGMs may exhibit good fatigue crack propagation resistance. For example, when the crack propagated from the brittle core to the tough surface layer, the average fatigue crack growth rate in the Al-2124 core (3.9 X 10~(-6) mm/cycle) was significantly lower than for the Al-2124 alloy (1.5 X 10~(-5) mm/cycle) at a similar #DELTA#K value (7 MPa m~(1/2)), due to the highly tortuous crack path in the 2124/SiC/10p brittle layer. The 2124/SiC/10p brittle layer had a lower fatigue crack growth rate (6.6 X 10~(-6) mm/cycle) than the 2124/SiC/10p conventional composite (7.5 X 10~(-6) mm/cycle) because of the compressive residual stresses in the surface layer. Thus, FGMs could be more acceptable for critical applications than their conventional composite counterparts.
机译:涉及冷压和热挤压的粉末冶金工艺已被用于制造基于2124 / SiC / 10p复合系统的功能梯度材料(FGM)。制作了两种形式的具有圆形横截面的单芯散装FGM。一种形式(指定为10SiC-2124)具有未增强的Al-2124合金的中心核,该中心核被2124 / SiC / 10p增强表面层包围;另一种形式(指定为2124-10SiC)具有复合核和合金表面层。这些形式使得能够通过从(1)FGM的可延展芯向较脆的区域或(2)脆性芯至延展区域的疲劳裂纹扩展来研究径向渐变型芯对疲劳的影响。使用恒定的施加应力强度因子范围(#DELTA#K = 7 MPa m〜(1/2))技术测量疲劳裂纹的生长速率。区分了两个主要的疲劳裂纹扩展速率,分别对应于芯层和表层的增长。结果表明,FGMs具有良好的抗疲劳裂纹扩展能力。例如,当裂纹从脆性芯扩展到坚硬的表面层时,Al-2124芯的平均疲劳裂纹扩展速率(3.9 X 10〜(-6)mm /循环)显着低于Al- 2124合金(1.5 X 10〜(-5)mm /周)在#DELTA#K值(7 MPa m〜(1/2))相似的情况下归因于2124 / SiC / 10p脆性中的高弯曲裂纹路径层。 2124 / SiC / 10p脆性层的疲劳裂纹扩展率(6.6 X 10〜(-6)mm /周期)比2124 / SiC / 10p常规复合材料(7.5 X 10〜(-6)mm /周期)低由于表面层的压缩残余应力。因此,对于关键应用而言,FGM可能比其常规的复合材料更为可接受。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号