...
首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >Effects of Microstructure on the Short Fatigue Crack Initiation and Propagation Characteristics of Biomedical #alpha#/#beta# Titanium Alloys
【24h】

Effects of Microstructure on the Short Fatigue Crack Initiation and Propagation Characteristics of Biomedical #alpha#/#beta# Titanium Alloys

机译:显微组织对生物医学#alpha#/#beta#钛合金短时疲劳裂纹萌生和扩展特性的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This article presents the results of a study of the effects of microstructure on the fatigue strength and the short fatigue crack initiation and propagation characteristics of a biomedical #alpha#/#beta# titanium alloy, Ti-6Al-7Nb. The results are compared to those obtained from a Ti-6Al-4V extra-low interstitial (ELI) alloy. Fatigue crack initiation occurs mainly at primary #alpha# grain boundaries in an equiaxed a structure, whereas, in a Widmanstatten #alpha# structure, initiation occurs within the #alpha# colonies and prior #beta# grains, where #beta# plates are inclined at around 45 deg to the stress-axis direction. In an equiaxed #alpha# structure, the short fatigue crack initiation and propagation life, where the length of the crack (#alpha#) is in a microstructurally short fatigue-crack regime (2a <50 #mu#m), occupies around 50 pct of the total fatigue life. On the other hand, the fatigue crack in a Widmanstatten a structure initiates at very early stages of fatigue, and, therefore, the fatigue crack-initiation life occupies a few percentages of the total fatigue life in an #alpha# structure. Then, the short fatigue crack propagates rapidly and is arrested at the grain boundaries of #alpha# colonies or prior #beta# grains for a relatively long period, until the short crack passes through the boundaries to specimen failure. Therefore, the short fatigue crack-arrest life occupies more than 90 pct of the total fatigue life in a Widmanstatten #alpha# structure. These trends are similar between the Ti-6Al-7Nb and Ti-6Al-4V ELI alloys and biomedical #alpha#/#beta# titanium alloys. The total fatigue life for the Ti-6Al-7Nb alloy with an equiaxed #alpha# structure is changed by the volume fraction of primary #alpha# phase and the cooling rate after solution treatment. By increasing the volume fraction of the primary #alpha# phase from 0 to 70 pct, the fatigue limit of the Ti-6Al-7Nb alloy is raised. Changing the cooling rate after solution treatment by switching from air cooling towrater quenching improves the fatigue limit of the Ti-6Al-7Nb alloy significantly.
机译:本文介绍了微观结构对生物医学#alpha#/#beta#钛合金Ti-6Al-7Nb的疲劳强度和短疲劳裂纹萌生和传播特性的影响的研究结果。将结果与从Ti-6Al-4V超低间隙(ELI)合金获得的结果进行比较。疲劳裂纹萌生主要发生在等轴结构的主要#alpha#晶界处,而在Widmanstatten#alpha#结构中,萌发发生在#alpha#菌落和先前的#beta#晶粒内,其中#beta#板倾斜与应力轴方向成45度角。在等轴的#alpha#结构中,短的疲劳裂纹萌生和扩展寿命,其中裂纹的长度(#alpha#)处于微观结构的短疲劳裂纹状态(2a <50#mu#m),大约占50总疲劳寿命的pct。另一方面,Widmanstatten a结构中的疲劳裂纹在疲劳的非常早期阶段就开始产生,因此,疲劳裂纹萌生寿命占#alpha#结构中总疲劳寿命的百分之几。然后,短的疲劳裂纹迅速传播,并在相当长的一段时间内停留在#alpha#菌落或先前的#beta#晶粒的晶界处,直到该短裂纹穿过边界导致样品破坏。因此,在Widmanstatten#alpha#结构中,短暂的疲劳裂纹保持寿命占总疲劳寿命的90%以上。在Ti-6Al-7Nb和Ti-6Al-4V ELI合金与生物医学#alpha#/#beta#钛合金之间,这些趋势相似。具有等轴αα#结构的Ti-6Al-7Nb合金的总疲劳寿命会因固溶后的αα相的体积分数和冷却速率而改变。通过将主要#alpha#相的体积分数从0增加到70 pct,提高了Ti-6Al-7Nb合金的疲劳极限。通过从空冷转向淬火淬火来改变固溶处理后的冷却速率,可以显着改善Ti-6Al-7Nb合金的疲劳极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号